Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 108: 104472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763437

RESUMO

Pharmaceuticals released from municipal effluents discharges pose a risk to aquatic organisms. The toxicity of 5 pharmaceuticals with distinct therapeutic actions were assessed in rainbow trout: olanzapine (antipsychotic), erythromycin (antibiotic), mycophenoate (immunosuppression), pinaverium (anti-inflammatory) and trazodone (sedative). Juveniles were exposed to these drugs for 96 h at concentrations between 64 µg/L up to 40 mg/L to reach lethality. Survival was determined and a suite of biomarkers was analyzed for drug biotransformation, oxidative stress/damage and metabolic activity at sublethal concentrations. The data revealed the following toxicity: olanzapine >trazodone>mycophenolate>pinaverium∼erythromycin based on mortality. The data also revealed that toxicity was associated to mass, pKa and hydrophobicity and the following sublethal effects: GST, LPO and DNA strand breaks. Pharmaceuticals with lower molecular weight, physiological pKa, moderate hydrophobicity, low biotransformation and DNA strand breaks were generally more toxic to fish. However, this should be considered as a general guide in identifying toxic pharmaceuticals in non-target organisms.


Assuntos
Biomarcadores , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Eritromicina/toxicidade , Trazodona/toxicidade , Olanzapina/toxicidade , Glutationa Transferase/metabolismo , Benzodiazepinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
2.
Hum Exp Toxicol ; 38(1): 45-55, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29774748

RESUMO

Trazodone (TRZ) is an antidepressant drug commonly used in the treatment of depression, anxiety, and insomnia. Although some studies demonstrated the adverse effects of TRZ related to cardiovascular system, the conflicting results were observed in these studies. Therefore, we aimed to investigate the cardiac adverse effects of TRZ in rats at repeated doses in our study. In accordance with this purpose, TRZ was administered orally to rats at 5, 10, and 20 mg/kg doses for 28 days. Electrocardiogram records, serum aspartate aminotransferase (AST), lactate dehydrogenase, creatine kinase-myoglobin band, cardiac troponin-T (cTn-T) levels, DNA damage in cardiomyocytes, and histologic view of heart tissues were evaluated. In addition, glutathione (GSH) and malondialdehyde (MDA) levels were measured to determine the oxidative status of cardiac tissue after TRZ administration. Heart rate was decreased, PR interval was prolonged, and QRS and T amplitudes were decreased in 20 mg/kg TRZ-administered group compared to the control group. Serum AST and cTn-T levels were significantly increased in 10 and 20 mg/kg TRZ-administered rats with respect to control rats. DNA damage was significantly increased in these groups. Additionally, degenerative histopathologic findings were observed in TRZ-administered groups. Although there was no difference in MDA levels between groups, GSH levels were significantly decreased in 10 and 20 mg/kg TRZ-administered groups compared to the control group. Our results have shown that TRZ induced cardiotoxicity in rats dose-dependently. It is assumed that oxidative stress related to GSH depletion may be accompanied by these adverse effects.


Assuntos
Antidepressivos de Segunda Geração/toxicidade , Cardiotoxicidade , Trazodona/toxicidade , Administração Oral , Animais , Aspartato Aminotransferases/sangue , Cardiotoxicidade/sangue , Cardiotoxicidade/patologia , Cardiotoxicidade/fisiopatologia , Dano ao DNA , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Troponina T/sangue
3.
Toxicol Sci ; 103(2): 335-45, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18344530

RESUMO

Mitochondrial toxicity is increasingly implicated in a host of drug-induced organ toxicities, including hepatotoxicity. Nefazodone was withdrawn from the U.S. market in 2004 due to hepatotoxicity. Accordingly, we evaluated nefazodone, another triazolopyridine trazodone, plus the azaspirodecanedione buspirone, for cytotoxicity and effects on mitochondrial function. In accord with its clinical disposition, nefazodone was the most toxic compound of the three, trazodone had relatively modest effects, whereas buspirone showed the least toxicity. Nefazodone profoundly inhibited mitochondrial respiration in isolated rat liver mitochondria and in intact HepG2 cells where this was accompanied by simultaneous acceleration of glycolysis. Using immunocaptured oxidative phosphorylation (OXPHOS) complexes, we identified Complex 1, and to a lesser amount Complex IV, as the targets of nefazodone toxicity. No inhibition was found for trazodone, and buspirone showed 3.4-fold less inhibition of OXPHOS Complex 1 than nefazodone. In human hepatocytes that express cytochrome P450, isoform 3A4, after 24 h exposure, nefazodone and trazodone collapsed mitochondrial membrane potential, and imposed oxidative stress, as detected via glutathione depletion, leading to cell death. Our results suggest that the mitochondrial impairment imposed by nefazodone is profound and likely contributes to its hepatotoxicity, especially in patients cotreated with other drugs with mitochondrial liabilities.


Assuntos
Ansiolíticos/toxicidade , Antidepressivos de Segunda Geração/toxicidade , Buspirona/toxicidade , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Trazodona/toxicidade , Triazóis/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Piperazinas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA