Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 451: 139475, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678648

RESUMO

In this work, we aimed to evaluate human intake of triclosan (TCS) associated with real-life use of different brands of Microban™ microwave-safe food packaging. Calculations were based on: TCS migration data (under the worst-case foreseeable conditions), MPs abundance and TCS bioaccessibility from microplastics (MPs), leached from containers under microwave heating. Bioaccessibility studies were performed with in vitro digestion of MPs, followed by liquid-liquid extraction of TCS from digestive fluids and LC-QqQ-MS analysis yielding values of 46 ± 9%. The estimated weekly intake (EWI) of TCS ranged between 11 and 42 µg/kg body weight/week, with migration being the largest contribution (0.6-2.3 mg/week), compared to leaching of MPs (75-300 µg/week). These values represent a significant source of human exposure to TCS, emphasizing the need to harmonize the ban of TCS in food contact materials worldwide and improve compliance testing of food contact articles, particularly those marketed through online sales platforms.


Assuntos
Embalagem de Alimentos , Polipropilenos , Triclosan , Triclosan/análise , Triclosan/química , Embalagem de Alimentos/instrumentação , Humanos , Polipropilenos/química , Contaminação de Alimentos/análise , Exposição Dietética/análise
2.
Sci Total Environ ; 922: 171156, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417527

RESUMO

The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17ß-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.


Assuntos
Cosméticos , Triclosan , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental , Ecossistema , Svalbard , Triclosan/análise , Poluentes Químicos da Água/análise , Cosméticos/análise , Medição de Risco , Ciprofloxacina/análise , Preparações Farmacêuticas
3.
J Water Health ; 22(1): 36-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295071

RESUMO

In this study, the occurrence and environmental risks related to triclosan (TCS) in the two wastewater treatment plants (WWTPs) were investigated in Isfahan, Iran. Influent and effluent samples were collected and analyzed by dispersive liquid-liquid microextraction (DLLME)-GC-MS method with derivatization. Moreover, the risk of TCS exposure was conducted for aquatic organisms (algae, crustaceans, and fishes) and humans (males and females). TCS mean concentrations in influent and effluent of WWTPs were in the range of 3.70-52.99 and 0.83-1.09 µg/L, respectively. There were also no differences in the quantity of TCS and physicochemical parameters among the two WWTPs. The mean risk quotient (RQ) for TCS was higher than 1 (in algae) with dilution factors (DFs) equal to 1 in WWTP1. Moreover, the RQ value was higher than 1 for humans based on the reference dose of MDH (RFDMDH) in WWTP1. Furthermore, TCS concentration in wastewater effluent was the influential factor in varying the risk of TCS exposure. The results of the present study showed the risk of TCS exposure from the discharge of effluent of WWTP1 was higher than WWTP2. Moreover, the results of this study may be suitable for promoting WWTP processes to completely remove micropollutants.


Assuntos
Triclosan , Poluentes Químicos da Água , Purificação da Água , Humanos , Triclosan/toxicidade , Triclosan/análise , Antibacterianos , Águas Residuárias , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
4.
Sci Total Environ ; 868: 161542, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36649764

RESUMO

Assessment of human exposure to mixtures of non-persistent chemicals from food matrices and consumer products requires accurate characterization and estimation of their preceding exposure levels, and assessment sampling approaches for these varying chemicals remain disputable. Here, we used high-throughput targeted method to quantify urinary concentrations of 59 most common non-persistent chemicals (6 parabens, 14 bisphenols, 1 triclosan, 7 benzophenones, 2 dichlorophenols, 13 phthalate metabolites and 16 antioxidants) in 158 consecutive spot samples from 11 participants over three consecutive days, 33 samples of which were first morning voids (FMVs). We found 49 chemicals with detection frequencies over 70 % in all urine samples. Principal component analyses showed greater inter-person variations than each person's inter-day variations. Intraclass correlation coefficient (ICC) to assess the reproducibility of targeted chemicals demonstrated that regardless of sampling approaches, dichlorophenols, most parabens, benzophenones and triclosan showed moderate to high reproducibility (0.445 < ICC < 0.969), with relatively high predictive power of FMVs for 24-h collections. Notably, most phthalates, bisphenols and antioxidants showed low ICC values. Together, our work demonstrates that FMV samples may be adequate for assessing human exposure to parabens, benzophenones, triclosan and dichlorophenols, whereas multiple consecutive urine collections may be advantageous for evaluating exposure to most phthalates, bisphenols and antioxidants.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Triclosan , Unionidae , Humanos , Animais , Parabenos/análise , Triclosan/análise , Reprodutibilidade dos Testes , Ácidos Ftálicos/urina , Benzofenonas/urina , Exposição Ambiental/análise , Poluentes Ambientais/análise
6.
Sci Total Environ ; 816: 151616, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774937

RESUMO

Triclosan (TCS) is a broad-spectrum antimicrobial agent commonly used in pharmaceuticals and personal care products (PPCPs). The widespread use of TCS makes it frequently detected in various environmental mediums. In view of the high detection frequency of TCS in the aquatic environment and sediments, and its toxic effects on aquatic species, it is critical and necessary to derive Chinese TCS water quality criteria (WQC) and sediment quality criteria (SQC) for protecting Chinese aquatic organisms, and perform the ecological risk assessment. In fact, former research had derived the WQC of TCS mainly based on acute and chronic toxicity data. As an endocrine disrupting chemical (EDC), TCS poses adverse effects on the growth, development and reproduction of aquatic organisms at much lower concentration. Considering nonlethal endpoints are sensitive endpoints for EDCs, TCS long-term water quality criteria (LWQC) was derived based on reproduction and growth related endpoints. In this work, the acute toxicity data of 19 aquatic organisms and the chronic toxicity data of 15 aquatic organisms were obtained through collection and screening. The best fitting model of species sensitivity distribution (SSD) models including Normal, Log-Normal, Logistic and Log-Logistic of toxicity data was selected to derive WQC. The short-term and long-term WQC of TCS for Chinese aquatic organisms were 6.22 µg/L and 0.25 µg/L, respectively. Furthermore, through the phase-equilibrium partitioning method, SQC was derived based on WQC. SQC-low (SQC-L) and SQC-high (SQCH) were 0.13 mg/kg and 3.26 mg/kg, respectively. Moreover, the exposure concentration (EPC) data of TCS in Chinese rivers and sediments were collected. And through the hazard quotient (HQ) method and the joint probability curve (JPC) method we found that there were certain TCS ecological risks in Chinese rivers and sediments. Our work will provide a valuable reference for protecting aquatic organisms and minimizing TCS ecological risk in China.


Assuntos
Triclosan , Poluentes Químicos da Água , Organismos Aquáticos , China , Água Doce , Medição de Risco , Triclosan/análise , Triclosan/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
7.
Environ Pollut ; 286: 117569, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438492

RESUMO

Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.


Assuntos
COVID-19 , Triclosan , Poluentes Químicos da Água , Biomarcadores , Ecossistema , Humanos , SARS-CoV-2 , Triclosan/análise , Triclosan/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Pollut Res Int ; 28(36): 50602-50610, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963991

RESUMO

The high levels of parabens (including methyl-, ethyl- and propyl congeners), triclocarban (TCC) and triclosan (TCS) used every year in China might be a problem to the typical wastewater treatment plant (WWTP). This study addresses measurements of parabens, TCC and TCS Northern China WWTP and a modelling assessment on the occurrence, fate and removal pathways in WWTP. Per-capita emissions of the three parabens, TCC and TCS to the WWTP were estimated as 0.41, 0.11 and 0.07 mg/d. After the wastewater treatment processes, 94, 92 and 87% of parabens, TCC and TCS were removed. The major removal pathway of parabens was biodegradation while that of TCC and TCS were sorption to sludge. Computer simulations on the fate processes of parabens, TCC and TCS in the WWTP using the SimpleTreat 4.0 model suggested the model could generally reproduce the measurements with root mean squared errors (RMSEs) of less than 10 ng/L. However, the model underestimated the removal of TCC and TCS from water to sludge in the primary tank. These discrepancies were attributed to the uncertainty of the predicted organic carbon-water partition coefficients (Koc) to which the modelling results are highly sensitive. The model predictions using updated Koc became more accurate and RMSEs of TCC and TCS were reduced by 40 and 80%, respectively. The modelling assessment suggests that the SimpleTreat, as a generic model to simulate chemical fate processes in WWTPs, has the potential to be applied to other similar WWTPs in China for estimating environmental releases of parabens, TCC and TCS at a larger spatial scale.


Assuntos
Carbanilidas , Triclosan , Poluentes Químicos da Água , Carbanilidas/análise , Parabenos/análise , Triclosan/análise , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 786: 147524, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975105

RESUMO

The ban of some antibacterial ingredients, such as triclosan (TCS) and triclocarban (TCC), in personal care products (PCPs) in some countries (but not in China) has resulted in the increasing use of antibacterial alternatives, such as chloroxylenol (PCMX). However, the underlying human health risks and environmental impacts of PCMX exposure are largely unknown. Thus, the distribution characteristics of PCMX in PCPs and susceptible populations and the major routes and health risks of human exposure to PCMX were investigated. The PCMX, TCS, and TCC concentrations in PCPs, urine, drinking water, and surface water were determined using high-performance liquid chromatograph system equipped with diode array detector or triple quadrupole mass spectrometer. Results showed that PCMX is widely used in antibacterial hand sanitizers and household disinfectants in China. The addition of PCMX as an antibacterial ingredient in PCPs showed an increasing trend. The geomean concentrations of urinary PCMX in children and pregnant women were 21.6 and 31.9 µg·L-1, respectively, which were much higher than TCS and TCC. A considerable concentration of PCMX ranging from 1.62 to 9.57 µg·L-1 was observed in the aquatic environment, suggesting a potential massive-use of PCMX by humans. Human PCMX exposure via drinking was negligible because the PCMX concentrations in drinking water were less than 2.00 ng·L-1. During human simulation experiment, we found that dermal contact was the dominant route of human PCMX exposure, accounting for 92.1% of the urinary PCMX concentration. The estimated daily intake of PCMX in 9.68% of children and 5.66% of pregnant women was higher than the reference dose. However, the urinary 8-hydroxy-2'-deoxyguanosine concentrations remained stable despite the elevated PCMX concentrations, thereby suggesting that daily PCMX exposure may not cause oxidative DNA damage in humans. Nevertheless, the potential ecotoxicity and health risks induced by chronic PCMX exposure cannot be ignored because of its increasing use.


Assuntos
Carbanilidas , Cosméticos , Triclosan , Antibacterianos , Carbanilidas/análise , Criança , China , Feminino , Humanos , Gravidez , Medição de Risco , Triclosan/análise , Triclosan/toxicidade , Xilenos
10.
Ecotoxicol Environ Saf ; 190: 110022, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31865205

RESUMO

Reclaimed wastewater (RW) is increasingly used to irrigate agricultural land and to alleviate agricultural water shortages worldwide. This usage has resulted in concerns about soil contamination by pharmaceuticals and personal care products (PPCPs) and the human health risks associated with dietary crop intake. In this study, we systematically analysed the occurrence and accumulation of 11 PPCPs and one active metabolite in soils and various crops (cucumber, eggplant, long bean and wheat) from realistic RW irrigation fields with different irrigation histories (20, 30 and 40 years) in Beijing and evaluated the human health risks associated with the consumption of these crops. The 11 PPCPs and one active metabolite were detected at concentrations ranging from 0.67 to 22.92 ng L-1 in RW, 0.029-28.13 µg kg-1 in irrigated soil, and <0.01-28.01 µg kg-1 in crops. The concentrations of N4-acetyl-sulfamethoxazole and triclosan were higher than those of other PPCPs, with respective concentrations of 14.39-31.44 ng L-1 and 15.93-26.23 ng L-1 in RW, 10.92-23.29 µg kg-1 and 20.22-28.13 µg kg-1 in irrigated soil and 17.92-28.01 µg kg-1 and 8.92-14.91 µg kg-1 in crops. However, the estimated threshold of toxicological concern (TTC) and hazard quotient (HQ) values revealed that the concentrations of N4-acetyl-sulfamethoxazole and triclosan in crops irrigated with RW should be considered a de minimis risk to human health. The concentrations of 11 PPCPs and one active metabolite in soils and crops and the calculated fruit bioconcentration factors (BCFs) did not display obvious increases associated with the duration of RW irrigation in real agricultural systems (P > 0.05). The concentrations of the studied PPCPs in the RW used for irrigation followed different patterns from the concentrations detected in the irrigated soils and crops. Although the concentrations of sulfamethoxazole, sulfisoxazole, sulfamethazine and trimethoprim in RW were higher than those of many other studied PPCPs, their respective values in the irrigated soils and crops did not display a similar tendency. The uptake and accumulation of PPCPs varied among the crop species (P < 0.05). Although PPCPs were detected in eggplant, long bean and wheat (BCFs: not applicable-1.67, 0.03-1.35 and 0.01-5.01, respectively), PPCPs accumulated at increased levels in cucumber (BCFs 0.03-18.98). The estimated TTC and HQ values showed that the consumption of crops irrigated long-term with RW presents a de minimis risk to human health. However, further studies with more PPCPs and additional crop species need to be conducted, the synergistic effects of chemical mixtures of multiple PPCPs and the toxic effects of PPCP metabolites should be elucidated to obtain more reliable information on the safety of wastewater reuse for irrigation.


Assuntos
Irrigação Agrícola , Cosméticos/análise , Preparações Farmacêuticas/análise , Poluentes do Solo/análise , Águas Residuárias/química , Pequim , China , Cosméticos/toxicidade , Produtos Agrícolas/química , Humanos , Medição de Risco , Poluentes do Solo/toxicidade , Sulfametoxazol/análogos & derivados , Sulfametoxazol/análise , Sulfametoxazol/toxicidade , Triclosan/análise , Triclosan/toxicidade
11.
Sci Total Environ ; 690: 1110-1119, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470474

RESUMO

This study investigated the occurrence and fate of 19 biocides in 8 wastewater treatment plants and receiving aquatic environments (both freshwater and estuarine systems) in Thailand. The predominant compound in wastewater and surface water was methylparaben with the maximum concentration of 15.2 µg/L detected in the receiving river, while in sludge and sediment was triclocarban with the maximum concentration of 8.47 µg/g in sludge. Triclosan was the main contaminants in the fish samples with the maximum concentration of 1.20 µg/g. Similar results of biocides were found in the estuarine system in Pattaya city, with the maximum concentration of 185 ng/L in sea water for methylparaben, and 242 ng/g in estuarine sediment for triclocarban. The aqueous removal rates for the biocides ranged from 15% to 95% in average. The back estimated-usage and total estimated emission of Æ©19 biocides in Thailand was 279 and 202 tons/year, respectively. Preliminary ecological risk assessment showed that clotrimazole and triclosan could pose high risks to aquatic organisms in the receiving aquatic environments.


Assuntos
Desinfetantes/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Carbanilidas/análise , Rios/química , Tailândia , Triclosan/análise , Águas Residuárias/química
12.
Mar Pollut Bull ; 148: 149-155, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422298

RESUMO

We assess how different micropollutants and microplastics, connected to wastewater are introduced into the Baltic Sea. The relevance of untreated wastewater, treated wastewater, treated and untreated rain runoff, as well as combined sewer overflow (CSO), is assessed in respect to mass balance, as well as relative inflows of micropollutants and -plastics into the Baltic Sea. To achieve this, modelling based on data on exemplary sewer systems and measured micropollutant concentrations in the single sources were used. Most compounds reach the receiving Baltic Sea via treated wastewater. A few exceptions are compounds that are removed to a very high extent in wastewater treatment plants. For these compounds, the emissions with stormwater (e.g., terbutryn) or untreated wastewater (e.g., triclosan) are dominating. Additionally, compounds that are discharged with the water that is running off urban surfaces are introduced into marine areas via rain runoff. These data are used to forecast a total mass load and concentrations that can be expected in the Baltic Sea. Massloads are expected to be between 0.1 and 5.9 t/a for triclosan and TCPP (tris (2-chloropropyl) phosphate) and 0.2 t/a for microplastic particles. The expected concentrations in open Baltic Sea waters range from 0.01 to 26 ng/L.


Assuntos
Microplásticos/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Chuva , Água do Mar/análise , Triclosan/análise
13.
J Hazard Mater ; 360: 623-630, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30149349

RESUMO

Antimicrobials in indoor dust pose concerns due to their endocrine disrupting activities and potential promotion of antibiotic resistance. We adopted dispersive solid phase extraction (d-SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify antimicrobials in dust. The method showed favorable linearity (R2 >0.99), recovery (83-115%), and method detection limits (1.2-5.6 ng/g, dry weight). All seven analytes were found at median concentrations in ng/g in each of the 80 U.S. dust samples collected from athletic facilities and residential homes: methyl paraben (1920) > propyl paraben (965) > triclosan (390) > triclocarban (270) > ethyl paraben (195) > butyl paraben (80) > benzyl paraben (6). Triclosan levels in dust from athletic facilities were significantly higher than those in private homes (p < 0.05). Median estimated daily intake (EDI) of antimicrobials in ng/kg-body weight/d from dust ingestion was lowest for adults (1.9) and higher for more sensitive subpopulations, including infants (19.8), toddlers (23.6), children (11.8) and teenagers (4.6). This first application of d-SPE to the analysis of dust produced U.S. baseline data for triclosan and triclocarban levels in indoor dust just prior to the 2017 Federal ban on use of these trichlorinated aromatics in antiseptic soaps and related personal care products.


Assuntos
Carbanilidas/análise , Poeira/análise , Exposição Ambiental/análise , Parabenos/análise , Triclosan/análise , Adolescente , Adulto , Criança , Pré-Escolar , Cromatografia Líquida , Monitoramento Ambiental , Humanos , Lactente , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Estados Unidos
14.
Environ Pollut ; 242(Pt A): 827-838, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30036836

RESUMO

Trends in the widespread use of personal care products (PCPs) containing triclosan (TCS) and triclocarban (TCC) have led to continuous emissions of these chemicals into the environment. Consequently, both chemicals are ubiquitously present at high concentrations in the aquatic systems based on widely reported measured environmental concentration (MECs) data in different environmental systems (e.g. freshwater) worldwide, especially in developed countries. In developing countries, however, lack of MECs data is a major issue, and therefore, inhibits effective risk assessment of these chemicals. Herein, TCS and TCC releases from personal care products (PCPs) were quantified, using a modelling approach to determine predicted environmental concentrations (PECs) in wastewater, freshwater, and soils, and likely risk(s) were estimated by calculating risk quotient (RQs). TCS and TCC in freshwater had RQs >1 based on estimated PECs with wide variations (≈2-232) as performed across the three dilutions factors (1, 3, and 10) considered in this study; an indicator of their likely adverse effect on freshwater organisms. In untreated and treated wastewater, TCS RQs values for bacteria were >1, but <1 for TCC, implying the former may adversely affect the functioning of wastewater treatment plants (WWTPs), and with no plausible impacts from the latter. In terrestrial systems, RQ results for individual chemicals revealed no or limited risks; therefore, additional investigations are required on their toxicity, as effects data was very limited and characterised by wide variations. Future national monitoring programs in developing countries should consider including TCS and TCC as the results suggest both chemicals are of concern to freshwater, and TCS in WWTPs. Potential risks of their metabolites remain unquantified to date.


Assuntos
Carbanilidas/química , Monitoramento Ambiental , Triclosan/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos , Água Doce/análise , Medição de Risco , África do Sul , Águas Residuárias/química
15.
Arch Environ Contam Toxicol ; 75(2): 224-235, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29725723

RESUMO

Chemicals in the water of urban areas are representative of the occurrence of these chemicals in the city surrounding water systems and reflect recent human or industrial usage of those chemicals in the sampling areas. In this study, the levels of eight endocrine-disrupting chemicals [including bisphenol analogues, parabens, and triclosan (TCS)] were determined in urban river water and sediments in Guangzhou, South China, and their related ecological risks were evaluated. The eight target chemicals were frequently detected in our samples, with concentrations ranging from not detected (ND) to 65,600 ng/L and from ND to 492 ng/g dw in river water and sediments, respectively. Among these chemicals, the three most abundant were bisphenol A (BPA) (accounting for 35% of the total amount), methyl paraben (MeP) (23%), and TCS (14%) in river water and BPA (43%), TCS (37%), and MeP (14%) in sediments. Significant correlations were found between most target EDCs, particularly MeP and TCS, in river water and sediments (both p < 0.01), indicating their similar sources and wide usage. The ecological risk assessment methods used suggested that TCS was the chemical of primary concern, with an average hazard quotient (HQ) = 1.57 (up to 11.5) in river water and an average HQ = 0.74 (up to 3.63) in sediments. In addition, the ecological risk assessment of different sampling sites indicated a suspected high-risk level for some sites in the study area.


Assuntos
Disruptores Endócrinos/análise , Sedimentos Geológicos/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Compostos Benzidrílicos/análise , China , Cidades , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Parabenos/análise , Fenóis/análise , Medição de Risco , Triclosan/análise
16.
Environ Pollut ; 232: 274-283, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28958726

RESUMO

The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g-1, respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g-1 for TCS and 15 ng g-1 for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g-1 for TCS and 0.15 ng g-1 for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms exposed to PPCP.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Ibuprofeno/análise , Triclosan/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos , Brasil , Ecotoxicologia , Perna (Organismo) , Medição de Risco , Esgotos , Testes de Toxicidade/métodos
17.
Sci Total Environ ; 603-604: 487-494, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28641188

RESUMO

Ιn this study a probabilistic risk assessment was applied to investigate the environmental risks for the European aquatic environment associated with triclosan (TCS) occurrence in treated wastewater. The concentrations of TCS in effluents of European Sewage Treatment Plants (STPs) were recorded through literature review, while toxicity data was collected for three groups of aquatic organisms (algae, Daphnia magna and fish). The ratio of Measured Environmental Concentration (MEC) and Predicted No Effect Concentration (PNEC), expressed as a Risk Quotient (RQ), was calculated for risk characterization, while Monte Carlo simulation was applied to quantify the associated uncertainty. TCS monitoring data was available for 349 STPs located in 15 out of the 50 European countries. Its mean concentrations in STPs effluents ranged between 2.2ngL-1 and 47,800ngL-1. Higher TCS concentrations were observed in primarily treated wastewater; whereas no differences among countries or among secondary and tertiary effluents on the basis of the whole set of collected data were found. The 95th percentile of RQ for TCS was higher than 1 (in algae) for rivers with dilution factors (DFs) equal to or lower than 100, when the maximum concentration values were used, whereas the 95th percentile of RQ exceeded 1 for rivers with DFs up to 10, in cases where the calculations were based on mean concentration values. The probability that RQ exceeds 1 in rivers (for algae) ranged from 0.2% (DF=1000) to 45% (DF=2), when calculations are based on mean concentration values. The corresponding probabilities in rivers with DFs equal to 2 for Daphnia magna and fish were 0.7% and 0.4%, respectively. We propose that TCS monitoring should be intensified, especially on smaller rivers, to verify the findings of this study for possible environmental risks.


Assuntos
Monitoramento Ambiental , Medição de Risco , Rios/química , Esgotos/química , Triclosan/análise , Poluentes Químicos da Água/análise , Animais , Clorófitas , Daphnia , Europa (Continente) , Peixes , Método de Monte Carlo , Instalações de Eliminação de Resíduos
18.
Ecotoxicol Environ Saf ; 142: 578-587, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28479123

RESUMO

Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental/métodos , Lagos/química , Modelos Teóricos , Rios/química , Triclosan/análise , Poluentes Químicos da Água/análise , Biota/efeitos dos fármacos , Exposição Ambiental/análise , Minnesota , Medição de Risco , Triclosan/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
19.
Ecotoxicol Environ Saf ; 142: 588-596, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28483548

RESUMO

Triclosan, an antimicrobial compound found in consumer products, has been detected in low concentrations in Minnesota municipal wastewater treatment plant (WWTP) effluent. This assessment evaluates potential health risks for exposure of adults and children to triclosan in Minnesota surface water, sediments, and fish. Potential exposures via fish consumption are considered for recreational or subsistence-level consumers. This assessment uses two chronic oral toxicity benchmarks, which bracket other available toxicity values. The first benchmark is a lower bound on a benchmark dose associated with a 10% risk (BMDL10) of 47mg per kilogram per day (mg/kg-day) for kidney effects in hamsters. This value was identified as the most sensitive endpoint and species in a review by Rodricks et al. (2010) and is used herein to derive an estimated reference dose (RfD(Rodricks)) of 0.47mg/kg-day. The second benchmark is a reference dose (RfD) of 0.047mg/kg-day derived from a no observed adverse effect level (NOAEL) of 10mg/kg-day for hepatic and hematopoietic effects in mice (Minnesota Department of Health [MDH] 2014). Based on conservative assumptions regarding human exposures to triclosan, calculated risk estimates are far below levels of concern. These estimates are likely to overestimate risks for potential receptors, particularly because sample locations were generally biased towards known discharges (i.e., WWTP effluent).


Assuntos
Monitoramento Ambiental/métodos , Lagos/análise , Modelos Teóricos , Rios/química , Triclosan/análise , Poluentes Químicos da Água/análise , Adulto , Animais , Criança , Cricetinae , Sedimentos Geológicos/química , Humanos , Camundongos , Minnesota , Nível de Efeito Adverso não Observado , Saúde Pública , Medição de Risco , Triclosan/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
20.
Ecotoxicol Environ Saf ; 143: 111-119, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28525814

RESUMO

The occurrence of antimicrobial agent triclosan (TCS) in the global aquatic and terrestrial environment is an emerging concern. While risk assessment for TCS is available in certain countries, no studies have attempted to assess the risk of TCS worldwide. This could be due to lack of method to characterize the global exposure. The present study therefore proposed a probabilistic-based approach to approximate the percent-ranked measured environmental concentrations (MECs) by estimating exposure concentration distribution (ECD) for different environmental compartments on a global scale, incorporating approximate 1200 single MECs. Hazard of TCS was assessed from species sensitivity distribution as well as predicted no effect concentrations (PNECs) derived from ecotoxicological and toxicological endpoints. We draw on experiences from previous risk assessment exercises and present a holistic approach for characterizing the risk of TCS to microorganism in sewage treatment plant, aquatic and soil organisms, avian and mammalian species, and humans. Using the approach, we estimated risk of TCS to organisms dwelling in sediment and living in surface waters, and the risk quotients (MEC/PNEC) were within the range of 0.95 - 33.3 and 0.49 - 9.5, respectively. While the risk quotients for other environmental compartments were below a value of 1, there are large uncertainties likely due to an insufficient dataset of exposure and hazard of TCS.


Assuntos
Anti-Infecciosos/análise , Exposição Ambiental/análise , Poluentes Ambientais/análise , Triclosan/análise , Adulto , Animais , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA