Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783514

RESUMO

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Assuntos
Fenótipo , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas/genética , Biomassa
2.
Front Biosci (Landmark Ed) ; 29(4): 150, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682196

RESUMO

BACKGROUND: Salt stress is a multicomponent phenomenon; it includes many processes that directly or indirectly affect the plant. Attempts have been made to comprehensively consider the processes of salt stress in plants Triticum aestivum (variety Orenburgskaya 22) and Triticum durum (variety Zolotaya). METHODS: The study used methods of light and fluorescence microscopy, methods of immunofluorodetection, expression of DNA methyltransferase genes, genes of the ion transporter and superoxide dismutase families, as well as biochemical determination of total antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. RESULTS: According to morphometric indicators, the Orenburgskaya 22 variety showed greater tolerance to the action of 150 mM NaCl than the Zolotaya variety. The level of expression of genes of the HKT ion transporter family in the Orenburgskaya 22 variety is higher than in the Zolotaya variety. It was found that the expression of the DNA methyltransferase gene DRM2.1, which post-translationally methylates cytosine residues, is 22.3 times higher in Zolotaya compared to Orenburg 22 when exposed to salt. The accumulation of toxic ions is accompanied by an increase in reactive oxygen species (ROS) and increased damage to root tissue, especially in the Zolotaya variety. Using fluorescence microscopy using the Carboxy-H2DFF marker in the Orenburgskaya 22 variety at high NaCl concentrations, the highest fluorescence intensity was determined in the cap zone; in the Zolotaya variety-in the zones of the cap and root meristem. Excess ROS is more successfully removed in the Orenburgskaya 22 variety, which has a higher level of antioxidant activity (AOA), as well as the level of expression of the Cu/ZnSOD and MnSOD superoxide dismutase genes. Using programmed cell death (PCD) markers based on the release of cytochrome c from mitochondria into the cytoplasm, DNA breakage and the release of phosphatidylserine from mitochondria, the degree of damage to root cells was assessed in both wheat varieties. It has been proven that wheat cell death occurs through the mitochondrial pathway. It was noted that the salt-sensitive variety Zolotaya had a significant number of necrotic cells. CONCLUSION: Based on the data obtained, it was concluded that the Orenburgskaya 22 variety exhibits greater resistance to salinity than the Zolotaya variety. These data may be of practical importance for enhancing protective mechanisms under abiotic stress.


Assuntos
Tolerância ao Sal , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 14(1): 3121, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326390

RESUMO

A response to manganese nanoparticles was studied in seedlings of two wheat cultivars and a model system of plant cell membranes. Nanoparticles at concentrations of 125 and 250 mg/ml were applied foliar. The application of NPs enhanced the content of Mn in plant cells, indicating its penetration through the leaf surface. The stressful effect in the plant cells was estimated based on changes in the activity of antioxidant enzymes, content of chlorophylls and starch. MnNPs evoked no significant changes in the leaf morphology, however, an increase in enzyme activity, starch accumulation, and a decrease in chlorophyll synthesis indicated the stress occurrence. Moreover, a rise in the electrokinetic potential of the chloroplast membrane surface and the reconstruction of their hydrophobic parts toward an increase in fatty acid saturation was found.


Assuntos
Manganês , Nanopartículas , Manganês/toxicidade , Manganês/metabolismo , Plântula/metabolismo , Triticum/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Clorofila/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Membrana Celular/metabolismo , Amido/metabolismo
4.
Plant J ; 118(5): 1343-1357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340035

RESUMO

It has been hypothesized that vacuolar occupancy in mature root cortical parenchyma cells regulates root metabolic cost and thereby plant fitness under conditions of drought, suboptimal nutrient availability, and increased soil mechanical impedance. However, the mechanistic role of vacuoles in reducing root metabolic cost was unproven. Here we provide evidence to support this hypothesis. We first show that root cortical cell size is determined by both cortical cell diameter and cell length. Significant genotypic variation for both cortical cell diameter (~1.1- to 1.5-fold) and cortical cell length (~ 1.3- to 7-fold) was observed in maize and wheat. GWAS and QTL analyses indicate cortical cell diameter and length are heritable and under independent genetic control. We identify candidate genes for both phenes. Empirical results from isophenic lines contrasting for cortical cell diameter and length show that increased cell size, due to either diameter or length, is associated with reduced root respiration, nitrogen content, and phosphorus content. RootSlice, a functional-structural model of root anatomy, predicts that an increased vacuolar: cytoplasmic ratio per unit cortical volume causes reduced root respiration and nutrient content. Ultrastructural imaging of cortical parenchyma cells with varying cortical diameter and cortical cell length confirms the in silico predictions and shows that an increase in cell size is correlated with increased vacuolar volume and reduced cytoplasmic volume. Vacuolar occupancy and its relationship with cell size merits further investigation as a phene for improving crop adaptation to edaphic stress.


Assuntos
Tamanho Celular , Raízes de Plantas , Locos de Características Quantitativas , Vacúolos , Zea mays , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/citologia , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Zea mays/citologia , Vacúolos/metabolismo , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Estudo de Associação Genômica Ampla , Genótipo , Nitrogênio/metabolismo
5.
Chem Biodivers ; 20(4): e202201137, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36891674

RESUMO

The rapidly growing human population has led to duplicate food production and also reduced product loss. Although the negative effects of synthetic chemicals were recorded, they are still used as agrochemical. The production of non-toxic synthetics makes their use particularly safe. The goal of our research is to evaluate antimicrobial activity of previously synthesized Poly(p-phenylene-1-(2,5-dimethylphenyl)-5-phenyl-1H-pyrazole-3,4-dicarboxy amide) (poly(PDPPD)) against selected Gram-negative, Gram-positive bacteria, and fungus. In addition, the possible genotoxic effects of the poly(PDPPD) were searched on Triticum vulgare and Amaranthus retroflexus seedlings using Random Amplified Polymorphic DNA (RAPD) marker. The binding affinity and binding energies of the synthesized chemical to B-DNA were simulated with AutoDock Vina. It was observed that the poly(PDPPD) affected most of the organisms in a dose-dependent manner. Pseudomonas aeruginosa was the most affected species in tested bacteria at 500 ppm with 21.5 mm diameters. Similarly, a prominent activity was observed for tested fungi. The poly(PDPPD) decreased root and stem length of the Triticum vulgare and Amaranthus retroflexus seedlings and also reduced the genomic template stability (GTS) value of Triticum vulgare more than Amaranthus retroflexus. The binding energy of poly(PDPPD) was found in range of -9.1 and -8.3 kcal/mol for nine residues of B-DNA.


Assuntos
DNA de Forma B , Pirazóis , Triticum , Humanos , Genômica , Pirazóis/farmacologia , Pirazóis/toxicidade , Técnica de Amplificação ao Acaso de DNA Polimórfico , Triticum/efeitos dos fármacos , Triticum/metabolismo , Mutagênicos/análise , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo
7.
Ecotoxicol Environ Saf ; 253: 114688, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842277

RESUMO

The soil contamination caused by the discharge of cadmium (Cd) from coal mining activities has aroused continuous attention due to the detrimental effects on the human health. This study aimed to investigate the characteristics on distribution of Cd in soils and its accumulation in wheat grains under wheat-cultivation system, and further assess the human health risks to adults and children. 58 soils and wheat samples in pairs from Linhuan coal mining area, Anhui Province were collected and analyzed. Results showed that the concentrations of Cd in 17.24% of soil samples exceeded the limit value established by the Ministry of Ecology and Environment. The ordinary kriging interpolation displayed that the spatial variability of Cd concentrations in soils was mainly influenced by coal mining activities. The transfer capacity of Cd from soils to wheat roots was greater than that from the wheat roots to grains. Multiple linear regression model clarified that soil pH and exchangeable Cd fraction in soils were the critical factors affecting the Cd accumulation in wheat grains. The carcinogenic risk of Cd levels in our studied wheat grains was a concern but still within the acceptable range, while their non-carcinogenic hazard was negligible for adults and children. The calculation results were in accord with the uncertainty analysis conclusion based on Monte Carlo simulation. The study was expected to promote the source management and control strategy of reducing tailing discharge, and providing scientific references for current soil remediation and land degradation prevention.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Cádmio/metabolismo , Solo , Triticum/metabolismo , Monitoramento Ambiental , Poluentes do Solo/análise , China , Medição de Risco , Metais Pesados/análise
8.
Sci Rep ; 13(1): 446, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624114

RESUMO

Application of cost-effective pretreatment of wheat straw is an important stage for massive bioethanol production. A new approach is aimed to enhance the pretreatment of wheat straw by using low-cost ionic liquid [TEA][HSO4] coupled with ultrasound irradiation. The pretreatment was conducted both at room temperature and at 130 °C with a high biomass loading rate of 20% and 20% wt water assisted by ultrasound at 100 W-24 kHz for 15 and 30 min. Wheat straw pretreated at 130 °C for 15 and 30 min had high delignification rates of 67.8% and 74.9%, respectively, and hemicellulose removal rates of 47.0% and 52.2%. Moreover, this pretreatment resulted in producing total reducing sugars of 24.5 and 32.1 mg/mL in enzymatic saccharification, respectively, which corresponds to saccharification yields of 67.7% and 79.8% with commercial cellulase enzyme CelluMax for 72 h. The ethanol generation rates of 38.9 and 42.0 g/L were attained for pretreated samples for 15 and 30 min, equivalent to the yields of 76.1% and 82.2% of the maximum theoretical yield following 48 h of fermentation. This demonstration provided a cheap and promising pretreatment technology in terms of efficiency and shortening the pretreatment time based on applying low-cost ionic liquid and efficient ultrasound pretreatment techniques, which facilitated the feasibility of this approach and could further develop the future of biorefinery.


Assuntos
Celulase , Líquidos Iônicos , Triticum/metabolismo , Análise Custo-Benefício , Fermentação , Hidrólise , Celulase/metabolismo
9.
Protoplasma ; 260(3): 839-851, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36318315

RESUMO

Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.


Assuntos
MicroRNAs , Óxido de Zinco , Carboidratos , Grão Comestível , MicroRNAs/metabolismo , Sementes , Sacarose/metabolismo , Triticum/metabolismo , Óxido de Zinco/metabolismo , Nanopartículas Metálicas , Proteínas Repressoras/metabolismo , Proteínas de Plantas/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806459

RESUMO

The study of molecular interactions, especially the inter-species protein-protein interactions, is crucial for understanding the disease infection mechanism in plants. These interactions play an important role in disease infection and host immune responses against pathogen attack. Among various critical fungal diseases, the incidences of Karnal bunt (Tilletia indica) around the world have hindered the export of the crops such as wheat from infected regions, thus causing substantial economic losses. Due to sparse information on T. indica, limited insight is available with regard to gaining in-depth knowledge of the interaction mechanisms between the host and pathogen proteins during the disease infection process. Here, we report the development of a comprehensive database and webserver, TritiKBdb, that implements various tools to study the protein-protein interactions in the Triticum species-Tilletia indica pathosystem. The novel 'interactomics' tool allows the user to visualize/compare the networks of the predicted interactions in an enriched manner. TritiKBdb is a user-friendly database that provides functional annotations such as subcellular localization, available domains, KEGG pathways, and GO terms of the host and pathogen proteins. Additionally, the information about the host and pathogen proteins that serve as transcription factors and effectors, respectively, is also made available. We believe that TritiKBdb will serve as a beneficial resource for the research community, and aid the community in better understanding the infection mechanisms of Karnal bunt and its interactions with wheat. The database is freely available for public use at http://bioinfo.usu.edu/tritikbdb/.


Assuntos
Basidiomycota , Triticum , Basidiomycota/fisiologia , Doenças das Plantas/microbiologia , Triticum/metabolismo
11.
Environ Sci Pollut Res Int ; 29(14): 20249-20264, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34727312

RESUMO

The efficacy of slow-release formulations of tribenuron-methyl (TBM) embedded in the matrix of degradable poly(3-hydroxybutyrate) blended with birch wood flour [polymer/wood flour/herbicide 50/30/20 wt.%] was compared with the efficacy of TBM as the active ingredient of the Mortira commercial formulation, which was applied as post-emergence spray to treat spring wheat cv. Novosibirskaya 15. The study was conducted in Central Siberia (in the environs of the city of Krasnoyarsk, Russia) from May to August 2020. The biological efficacy of the embedded TBM was 92.3%, which was considerably higher than the biological efficacy of the Mortira formulation used as the post-emergence spray (15.4%). The embedding of TBM into degradable blended matrix enabled long-duration functioning of this unstable herbicide in soil. The sensitivity of weed plants to TBM differed depending on the species. TBM was more effective against A. retroflexus and A. blitoides, which were killed at an earlier stage, than against C. album and G. aparine, whose percentage increased in the earlier stage and which were controlled by the herbicide less effectively and at later stages. On the plot treated with the embedded herbicide, the parameters of the wheat yield structure were the best, and the total yield was the highest: 3360 ± 40 kg/ha versus 3250 ± 50 kg/ha in the group of plants sprayed with the Mortira formulation. The grain produced in all groups was of high quality and was classified as Grade 1 food grain. The highest quality parameters (grain hectoliter mass, gluten, and protein contents) were obtained in the group of plants treated with the embedded herbicide. The study of the embedded TBM confirmed the high efficacy of the experimental formulation.


Assuntos
Herbicidas , Sulfonatos de Arila , Preparações de Ação Retardada/química , Herbicidas/química , Triticum/metabolismo
12.
J Sci Food Agric ; 101(14): 5956-5962, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33838057

RESUMO

BACKGROUND: Plastic film mulch is widely used to improve crop yield and water use efficiency (WUE, yield per unit evapotranspiration) in semi-arid regions. It is commonly applied as partial-film mulch (PM: at least 50% soil cover) or full-film mulch (FM: complete soil cover). The PM has lower economic and environmental cost; hence it would be a superior technology provided it delivers similar gains in yield and WUE in relation to FM. RESULTS: To solve contradictory results from individual studies, we compared FM and PM in a meta-analysis of 100 studies with 1881 comparisons (685 for wheat; 1196 for maize). Compared with bare ground, FM and PM both increased yield of wheat (20-26%) and maize (37-52%), and WUE of wheat (16-20%) and maize (38-48%), with statistically undistinguishable differences between PM and FM. The increases in crop yield and WUE were stronger at elevation > 1000 m, with annual precipitation<400 mm, and on loess soil, especially for maize. CONCLUSIONS: We concluded that partial-film mulch could replace full-film mulch to return similar yield and WUE improvement, with reduced cost and environmental pollution. © 2021 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Plásticos/economia , Triticum/crescimento & desenvolvimento , Água/metabolismo , Zea mays/crescimento & desenvolvimento , Agricultura/economia , Poluição Ambiental/prevenção & controle , Solo/química , Triticum/metabolismo , Água/análise , Zea mays/metabolismo
13.
Biochem Soc Trans ; 49(2): 609-616, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33769462

RESUMO

Nitrogen (N) is a major nutrient limiting productivity in many ecosystems. The large N demands associated with food crop production are met mainly through the provision of synthetic N fertiliser, leading to economic and ecological costs. Optimising the balance between N supply and demand is key to reducing N losses to the environment. Wheat (Triticum aestivum L.) production provides food for millions of people worldwide and is highly dependent on sufficient N supply. The size of the N sink, i.e. wheat grain (number, size, and protein content) is the main driver of high N requirement. Optimal functioning of temporary sinks, in particular the canopy, can also affect N requirement. N use efficiency (i.e. yield produced per unit of N available) tends to be lower under high N conditions, suggesting that wheat plants are more efficient under low N conditions and that there is an optimal functioning yet unattained under high N conditions. Understanding the determinants of low N requirement in wheat would provide the basis for the selection of genetic material suitable for sustainable cereal production. In this review, we dissect the drivers of N requirement at the plant level along with the temporal dynamics of supply and demand.


Assuntos
Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Triticum/metabolismo , Agricultura/economia , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Abastecimento de Alimentos/economia , Abastecimento de Alimentos/métodos , Humanos , Rizosfera , Microbiologia do Solo , Triticum/crescimento & desenvolvimento
14.
PLoS One ; 16(3): e0248837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735327

RESUMO

Most of the soils of Nepal had a higher potassium (K, expressed as K2O) level inherently. Later in 1976, the Government of Nepal has recommended K fertilizer rate at 30 kg K2O ha-1 in rice-wheat cropping systems. However, those crops began showing K deficiency symptoms in recent decades, which could be due to a large portion of soils with depleted K level or the insufficient input of K fertilizer for crop production. This study explored a limitation of K nutrient in the crops by establishing field trials from 2009-2014 at three agro-ecozones i.e., inner-Terai (2009-2010), high-Hills (2011-2012), and Terai (2012-2014) in Nepal. Seven rates of K fertilizer at 0, 15, 30, 45, 60, 75, and 90 kg K2O ha-1 were replicated four times in a randomized complete block design, where crop yields and yield-attributing parameters of rice-wheat cropping system were recorded. Results revealed that an increase in K rates from 45 to 75 kg K2O ha-1 under inner-Terai and Terai conditions and 45 to 60 kg ha-1 under high-Hills conditions produced significantly higher grain yields compared to the recommended K dose. Economically, the optimum rate of K fertilizer should not exceed 68 kg K2O ha-1 for rice in all agro-ecozones, or 73 kg K2O ha-1 for wheat in inner-Terai and 60 kg K2O ha-1 for wheat in high-Hills and Terai. Our findings suggest to increase potassium application in between 1.5 to 2.5 times of the current K fertilizer rate in rice-wheat cropping system of Nepal that need to be tested further in different locations and crop varieties.


Assuntos
Agricultura , Produção Agrícola , Produtos Agrícolas/metabolismo , Oryza/metabolismo , Potássio/análise , Triticum/metabolismo , Agricultura/economia , Análise de Variância , Produção Agrícola/economia , Análise de Dados , Fertilidade , Nepal , Solo/química
15.
J Sci Food Agric ; 101(12): 4900-4906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543480

RESUMO

BACKGROUND: Wheat is one of the most important cereal crops worldwide, and use of fungicides is an essential part of wheat production. Both prothioconazole and fluoxastrobin give excellent control of important seed and soilborne pathogens. The combination of these two fungicides shows a complementary mode of action and has a wide usage around the world. But the residue levels of these fungicides in the wheat matrix are still unknown. RESULTS: In the current study, a simple, low-cost and highly sensitive method using modified QuECHERS procedure combined with high-performance liquid chromatography-tandem mass spectrometry was developed to simultaneously quantify E- and Z-fluoxastrobin and the main metabolite prothioconazole-desthio of prothioconazole in the wheat matrix. The recoveries of prothioconazole-desthio, E-fluoxastrobin and Z-fluoxastrobin ranged from 84% to 101%, with relative standard deviation of less than 13.2%. The terminal residues of prothioconazole-desthio and E- and Z-fluoxastrobin were studied in wheat grain and straw under field conditions. The results showed that the terminal residue of the target compounds ranged from <0.01 to 0.029 mg kg-1 and <0.05 to 7.6 mg kg-1 in wheat grain and straw (expressed as dry weight), respectively. The risk quotients of prothioconazole-desthio and fluoxastrobin were 0.2% and 3.2%. CONCLUSIONS: The residue levels of the target analytes in wheat grain were lower than the maximum residue limits recommended by the Chinese Ministry of Agriculture. And the calculated risk quotient values were far below 100%, indicating a low dietary intake health risk to consumers. © 2021 Society of Chemical Industry.


Assuntos
Resíduos de Drogas/análise , Fungicidas Industriais/análise , Estrobilurinas/metabolismo , Triazóis/análise , Triticum/química , Triticum/metabolismo , Cromatografia Líquida de Alta Pressão , Exposição Dietética/efeitos adversos , Resíduos de Drogas/efeitos adversos , Resíduos de Drogas/metabolismo , Ingestão de Alimentos , Ecossistema , Contaminação de Alimentos/análise , Fungicidas Industriais/efeitos adversos , Fungicidas Industriais/metabolismo , Humanos , Medição de Risco , Estrobilurinas/análise , Espectrometria de Massas em Tandem , Triazóis/efeitos adversos , Triazóis/metabolismo
16.
Food Chem ; 342: 128210, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33508898

RESUMO

This study aimed to investigate bioaccessible/dialyzable fractions of nickel in selected foods and to clarify the impact of the food digestion/absorption on the final exposure of consumers to nickel. In vitro gastrointestinal incubation experiments were conducted to estimate the bioaccessibility of nickel in different foods. For estimation of a dialyzable fraction, dialysis filtration was conducted. Highest bioaccessibility (99.6%) was observed for wheat-based breakfast cereals. Lowest bioaccessibilities was observed for dried-fruits (on average 20.4%). Highest (61.5%) and lowest (24.5%) dialyzable fractions were observed for wheat-based breakfast cereal and chocolate respectively. Bioaccessible/dialyzable fractions based exposure assessments were highlighted the overestimation of exposures calculated based on total nickel concentrations in foods. This is particularly important when exposure values were compared with toxicological thresholds in a risk characterization study. When threshold values have been obtained through animal studies in which nickel was dosed at 100% accessibility/availability, e.g. nickel salts this is even more important.


Assuntos
Análise de Alimentos , Níquel/análise , Bélgica , Diálise , Digestão , Grão Comestível/química , Frutas/química , Frutas/metabolismo , Humanos , Níquel/metabolismo , Chá/química , Chá/metabolismo , Triticum/química , Triticum/metabolismo
17.
Ecotoxicol Environ Saf ; 208: 111685, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396017

RESUMO

The wastewater utilization for irrigation purposes is common practice in peri-urban areas located in vicinity of developed cities. This water contains elements like chromium (Cr), nickel (Ni), cadmium (Cd) and nitrate (NO3-N) that poses health risk when exposed to human. In this study effect of wastewater irrigation from Chakara wastewater plant, Faisalabad on growth of wheat and health risks was assessed. Pot experiment was conducted at Institute of Soil and Environmental, University of Agriculture, Faisalabad using different concentration of wastewater as treatment 100% tap water, 25% wastewater + 75% tap water, 50% wastewater + 50% tap water, 75% wastewater + 25% tap water, 100% wastewater. The results indicated that the wastewater irrigation negatively effects the plant growth and physiological parameters. The minimum plant height, grain weight, spike length, osmotic potential and SPAD values were recorded 50.33 cm, 1.47 g plant-1, 7.00 cm, 423 and 38.91 respectively in 100% wastewater irrigation. The risk quotient (RQ TEs) for each toxic element and cumulative risk index (RI TEs) values were calculated. The cadmium risk quotient (Cd RQ) for adults was on margin and value was >1 for in 75% wastewater + 25% tap water and 100% wastewater irrigation, while the RQ for Ni and Cr was <1. Maximum RI TEs values calculated in 100% wastewater irrigation 0.424 and 0.294 for children and adults respectively. Hence it was concluded that wastewater irrigation significantly increased the accumulation rate of metals and nitrate in wheat and cause potential health risks for children and adults.


Assuntos
Irrigação Agrícola/métodos , Bioacumulação/efeitos dos fármacos , Metais Pesados/toxicidade , Nitratos/toxicidade , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Águas Residuárias/química , Adulto , Cádmio/análise , Cádmio/toxicidade , Criança , Cromo/análise , Cromo/toxicidade , Cidades , Grão Comestível/química , Humanos , Metais Pesados/análise , Modelos Teóricos , Níquel/análise , Níquel/toxicidade , Nitratos/análise , Paquistão , Medição de Risco , Solo/química , Poluentes do Solo/análise , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Águas Residuárias/análise
18.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339363

RESUMO

Lunasin is a soybean-derived peptide that exhibits anticancer bioactivity in different cancer cells and has been identified in different plants. However, recent studies revealed through molecular and chemical analyses that lunasin was absent in wheat and other cereals. In this study, the soybean-derived lunasin was cloned into pCAMBIA3300 and we transferred the expression vector into wheat via an Agrobacterium-mediated transformation. The identification of transgenic wheat was detected by polymerase chain reaction, Western blot analysis, and ultra-performance liquid chromatography with tandem mass spectrometry. An enzyme-linked immunosorbent assay showed that lunasin content in transgenic wheat L32-3, L32-6, and L33-1 was 308.63, 436.78, and 349.07 µg/g, respectively, while lunasin was not detected in wild-type wheat. Lunasin enrichment from transgenic wheat displayed an increased anti-proliferative activity compared with peptide enrichment from wild-type wheat in HT-29 cells. Moreover, the results of a real-time quantitative polymerase chain reaction showed a significant elevation in p21, Bax, and caspase-3 expression, while Bcl-2 was significantly downregulated. In conclusion, soybean-derived lunasin was successfully expressed in wheat via Agrobacterium-mediated transformation and may exert anti-proliferative activity by regulating the apoptosis pathway in HT-29 cells, which provides an effective approach to compensate for the absence of lunasin in wheat.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Soja/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HT29 , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Triticum/genética , Triticum/metabolismo
19.
Theor Appl Genet ; 133(8): 2431-2450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451598

RESUMO

KEY MESSAGE: We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Melhoramento Vegetal/métodos , Reação em Cadeia da Polimerase/métodos , Triticum/genética , Alelos , Farinha/normas , Genes de Plantas , Marcadores Genéticos , Genótipo , Germinação , Fenótipo , Locos de Características Quantitativas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
20.
Chemosphere ; 252: 126522, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443262

RESUMO

There is limited research on the effects of gut microbiota on bioaccessibility of heavy metals in wheat grains. In this study, bioaccessibility of heavy metals (Cu, Cd, Pb, and Zn) in wheat was determined to elucidate transfer characteristics in the soil-grain-human systems near two large-scale mining areas in Shandong Province, North China using the physiologically-based extraction test (PBET) in combination with a simulator of human intestinal microbial ecosystems (SHIME). The results showed the bioconcentration factors (BCFs) of Cu, Cd, Pb, and Zn were 0.123-0.327, 0.188-0.478, 0.019-0.099, and 0.262-0.825, respectively. Significant and positive correlations were observed between heavy metals in soils and wheat grains. In the simulated colon phase, bioaccessibility of Cd and Zn significantly decreased to 7.81% and 8.81%, respectively, being 53% and 64% of that in the simulated small intestinal phase. However, bioaccessibility of Pb showed an obvious escalating trend, being 2.4 times higher than that of intestinal incubation. Based on the estimated daily intakes and contribution, the relative high contribution of Cu to the benchmark dose in both phases, Cu metabolism by human gut microbiota should be considered in human health risk assessment regarding wheat consumption.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Mineração , Triticum/química , China , Ecossistema , Grão Comestível/química , Humanos , Medição de Risco , Solo , Poluentes do Solo/análise , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA