Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 49(1): 89, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208951

RESUMO

Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viral agents in poultry production. Prophylactic vaccinations of chicken flocks are the primary tool for disease control. Widely used immunoprophylaxis can, however, provide high pressure which contributes to the genetic diversification of circulating viruses, e.g. through reassortment of genome segments. We report the genetic and phenotypic characterization of a field reassortant IBDV (designated as Bpop/03) that acquired segment A from very virulent IBDV and segment B from classical attenuated D78-like IBDV. Despite the mosaic genetic make-up, the virus caused high mortality (80%) in experimentally infected SPF chickens and induced lesions typical of the acute form of IBD. The in vivo study results are in contrast with the foregoing experimental investigations in which the natural reassortants exhibited an intermediate pathotype, and underline the complex nature of IBDV virulence.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas , Genoma Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Vírus da Doença Infecciosa da Bursa/patogenicidade , Doenças das Aves Domésticas/virologia , Vírus Reordenados/fisiologia , Vírus Reordenados/patogenicidade , Sequência de Aminoácidos , Animais , Infecções por Birnaviridae/virologia , Vírus da Doença Infecciosa da Bursa/genética , Filogenia , Polônia , Vírus Reordenados/genética , Virulência
2.
Hum Vaccin Immunother ; 13(1): 111-116, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27648636

RESUMO

Vaccination is the practiced and accessible measure for preventing influenza infection. Because chicken embryos used for vaccine production have various insufficiencies, more efficient methods are needed. African green monkey kidney (Vero) cells are recommended by the World Health Organization (WHO) as a safe substitute for influenza vaccine production for humans. However, the influenza virus usually had low-yield in Vero cells, which limits the usage of Vero cellular vaccines. This study used 2 high-yield influenza viruses in Vero cells: A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B) as donor viruses. It used 3 wild strain viruses to reassort new adaptation viruses, including: A/Tianjin/15/2009(H1N1), A/Fujian/196/2009(H3N2), and B/Chongqing/1384/2010(B). These three new viruses could maintain the characteristic of high-yield in Vero cells. Furthermore, they could keep the immunogenic characteristics of the original wild influenza viruses. Importantly, these viruses were shown as safe in chicken embryo and guinea pigs assessment systems. These results provide an alternative method to produce influenza vaccine based on Vero cells.


Assuntos
Técnicas de Cultura de Células , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza B/patogenicidade , Vacinas contra Influenza/efeitos adversos , Vírus Reordenados/patogenicidade , Tecnologia Farmacêutica , Animais , Chlorocebus aethiops , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Furões , Cobaias , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos BALB C , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/imunologia , Células Vero
3.
J Virol ; 89(1): 2-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320305

RESUMO

UNLABELLED: The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE: To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Genética Reversa , Virulência , Replicação Viral
4.
Expert Rev Vaccines ; 11(8): 1009-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23002981

RESUMO

Influenza pandemics occur periodically and the subtype of the next pandemic strain cannot be predicted. Vaccination remains a critical intervention during pandemics, but current production technology requires several months to develop sufficient vaccine to meet anticipated worldwide need. Candidate prepandemic vaccines for use in population priming or rapid deployment during an epidemic are in development but are subtype specific and logistical obstacles to timely distribution exist. Intensive research is underway to identify a universal vaccine, providing protection against all known influenza strains based on shared epitopes. Vaccine access is expected to be limited during early response to a pandemic, necessitating ethical vaccine distribution plans for within-country and global allocation. Mass vaccination plans must be in place prior to an event to ensure appropriate infrastructures are in place. Carefully crafted education campaigns regarding pandemic vaccine safety and efficacy should aid in maximizing pandemic vaccine uptake during a future event.


Assuntos
Programas de Imunização/organização & administração , Vacinas contra Influenza/provisão & distribuição , Influenza Humana/prevenção & controle , Vacinação em Massa/métodos , Pandemias/prevenção & controle , Variação Antigênica , Transmissão de Doença Infecciosa/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Política de Saúde/legislação & jurisprudência , Humanos , Programas de Imunização/legislação & jurisprudência , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinação em Massa/ética , Vacinação em Massa/legislação & jurisprudência , Ensaios Clínicos Controlados Aleatórios como Assunto , Vírus Reordenados/imunologia , Vírus Reordenados/patogenicidade
5.
Risk Anal ; 32(3): 555-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21977924

RESUMO

Reported data sets on infection of volunteers challenged with wild-type influenza A virus at graded doses are few. Alternatively, we aimed at developing a dose-response assessment for this virus based on the data sets for its live attenuated reassortants. Eleven data sets for live attenuated reassortants that were fit to beta-Poisson and exponential dose-response models. Dose-response relationships for those reassortants were characterized by pooling analysis of the data sets with respect to virus subtype (H1N1 or H3N2), attenuation method (cold-adapted or avian-human gene reassortment), and human age (adults or children). Furthermore, by comparing the above data sets to a limited number of reported data sets for wild-type virus, we quantified the degree of attenuation of wild-type virus with gene reassortment and estimated its infectivity. As a result, dose-response relationships of all reassortants were best described by a beta-Poisson model. Virus subtype and human age were significant factors determining the dose-response relationship, whereas attenuation method affected only the relationship of H1N1 virus infection to adults. The data sets for H3N2 wild-type virus could be pooled with those for its reassortants on the assumption that the gene reassortment attenuates wild-type virus by at least 63 times and most likely 1,070 times. Considering this most likely degree of attenuation, 10% infectious dose of H3N2 wild-type virus for adults was estimated at 18 TCID50 (95% CI = 8.8-35 TCID50). The infectivity of wild-type H1N1 virus remains unknown as the data set pooling was unsuccessful.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/etiologia , Vírus Reordenados/patogenicidade , Adulto , Animais , Criança , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Modelos Biológicos , Modelos Estatísticos , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Risco , Vacinas Atenuadas/administração & dosagem , Virulência/genética
7.
J Virol ; 79(9): 5721-31, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827187

RESUMO

Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.


Assuntos
Epitopos de Linfócito T/imunologia , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/virologia , Lentivirus de Primatas , Vírus Reordenados , Linfócitos T Citotóxicos/imunologia , Animais , Mapeamento de Epitopos , Produtos do Gene gag/genética , Epitopos Imunodominantes , Lentivirus de Primatas/genética , Lentivirus de Primatas/patogenicidade , Macaca nemestrina , Mutação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA