Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718025

RESUMO

Tracking small extracellular vesicles (sEVs), such as exosomes, requires staining them with dyes that penetrate their lipid bilayer, a process that leaves excess dye that needs to be mopped up to achieve high specificity. Current methods to remove superfluous dye have limitations, among them that they are time-intensive, carry the risk of losing sample and can require specialized equipment and materials. Here we present a fast, easy-to-use, and cost-free protocol for cleaning excess dye from stained sEV samples by adding their parental cells to the mixture to absorb the extra dye much like sponges do. Since sEVs are considered a next-generation drug delivery system, we further show the success of our approach at removing excess chemotherapeutic drug, daunorubicin, from the sEV solution.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Daunorrubicina/economia , Corantes/química , Coloração e Rotulagem/métodos , Coloração e Rotulagem/economia
2.
Analyst ; 149(12): 3416-3424, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716512

RESUMO

Extracellular vesicles (EVs) in urine are a promising source for developing non-invasive biomarkers. However, urine concentration and content are highly variable and dynamic, and actual urine collection and handling often is nonideal. Furthermore, patients such as those with prostate diseases have challenges in sample collection due to difficulties in holding urine at designated time points. Here, we simulated the actual situation of clinical sample collection to examine the stability of EVs in urine under different circumstances, including urine collection time and temporary storage temperature, as well as daily urine sampling under different diet conditions. EVs were isolated using functionalized EVtrap magnetic beads and characterized by nanoparticle tracking analysis (NTA), western blotting, electron microscopy, and mass spectrometry (MS). EVs in urine remained relatively stable during temporary storage for 6 hours at room temperature and for 12 hours at 4 °C, while significant fluctuations were observed in EV amounts from urine samples collected at different time points from the same individuals, especially under certain diets. Sample normalization with creatinine reduced the coefficient of variation (CV) values among EV samples from 17% to approximately 6% and facilitated downstream MS analyses. Finally, based on the results, we applied them to evaluate potential biomarker panels in prostate cancer by data-independent acquisition (DIA) MS, presenting the recommendation that can facilitate biomarker discovery with nonideal handling conditions.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Proteômica , Coleta de Urina , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Coleta de Urina/métodos , Masculino , Proteômica/métodos , Neoplasias da Próstata/urina , Espectrometria de Massas/métodos , Biomarcadores/urina , Temperatura
3.
Anal Chim Acta ; 1296: 342337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401929

RESUMO

As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 µL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Custo-Benefício , Microfluídica , Reprodutibilidade dos Testes , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores
4.
J Nanobiotechnology ; 22(1): 18, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172932

RESUMO

Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Exossomos/metabolismo , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo
5.
Hereditas ; 161(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173016

RESUMO

BACKGROUND: Vascular aging is an important pathophysiological basis for the senescence of various organs and systems in the human body, and it is a common pathogenetic trigger for many chronic diseases in the elderly. METHODS: The extracellular vesicles (EVs) from young and aged umbilical vein endothelial cells were isolated and identified by qPCR the differential expression levels of 47 mRNAs of genes closely related to aging in the two groups. RESULTS: There were significant differences in the expression levels of 18 genes (we noted upregulation in PLA2G12A, TP53BP1, CD144, PDE11A, FPGT, SERPINB4, POLD1, and PPFIBP2 and downregulation in ATP2C2, ROBO2, RRM2, GUCY1B1, NAT1-14, VEGFR2, WTAPP1, CD146, DMC1, and GRIK2). Subsequent qPCR identification of the above-mentioned genes in PBMCs and plasma-EVs from the various age groups revealed that the trend in expression levels in peripheral blood plasma-EVs of the different age groups was approximately the same as that in PBMCs. Of these mRNAs, the expression of four genes-PLA2G12A, TP53BP1, OPRL1, and KIAA0895-was commensurate with increasing age. In contradistinction, the expression trend of four genes (CREG1, PBX1, CD34, and SLIT2) was inversely proportional to the increase in age. Finally, by taking their intersection, we determined that the expression of TP53BP1 was upregulated with increasing human age and that CD34 and PBX1 were downregulated with increasing age. CONCLUSION: Our study indicates that human peripheral blood plasma-EV-derived TP53BP1, CD34, and PBX1 potentially comprise a noninvasive biomarker for assessing and predicting vascular aging.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Idoso , Humanos , Envelhecimento/genética , Biomarcadores/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Antígenos CD34/metabolismo
6.
Front Immunol ; 14: 1279496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035093

RESUMO

Background: Despite major advances in medicine, blood-borne biomarkers are urgently needed to support decision-making, including polytrauma. Here, we assessed serum-derived extracellular vesicles (EVs) as potential markers of decision-making in polytrauma. Objective: Our Liquid Biopsy in Organ Damage (LiBOD) study aimed to differentiate polytrauma with organ injury from polytrauma without organ injury. We analysed of blood-borne small EVs at the individual level using a combination of immunocapture and high-resolution imaging. Methods: To this end, we isolated, purified, and characterized small EVs according to the latest Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines from human blood collected within 24 h post-trauma and validated our results using a porcine polytrauma model. Results: We found that small EVs derived from monocytes CD14+ and CD14+CD61+ were significantly elevated in polytrauma with organ damage. To be precise, our findings revealed that CD9+CD14+ and CD14+CD61+ small EVs exhibited superior performance compared to CD9+CD61+ small EVs in accurately indicating polytrauma with organ damage, reaching a sensitivity and a specificity of 0.81% and 0.97%, respectively. The results in humans were confirmed in an independent porcine model of polytrauma. Conclusion: These findings suggest that these specific types of small EVs may serve as valuable, non-invasive, and objective biomarkers for assessing and monitoring the severity of polytrauma and associated organ damage.


Assuntos
Vesículas Extracelulares , Traumatismo Múltiplo , Humanos , Animais , Suínos , Vesículas Extracelulares/patologia , Biomarcadores , Biópsia Líquida , Monócitos , Traumatismo Múltiplo/patologia
7.
Cell Commun Signal ; 21(1): 276, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803478

RESUMO

BACKGROUND: Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids. METHODS: EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data. RESULTS: Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107a+EVs with neurofilament levels in blood of MS patients and HC. CONCLUSIONS: The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.


Extracellular vesicles (EVs) are tiny particles released by cells, carrying unique biomolecules specific to their cell of origin. EVs from the central nervous system (CNS) can reach the blood, where they could serve as liquid-biopsy markers for diagnosing brain diseases like neurodegenerative disorders and tumors. This study evaluated a flow cytometry platform (here termed EV Neuro assay), which can detect multiple EV-associated markers simultaneously, to assess its potential for identifying CNS-derived EVs and disease-specific markers in complex samples including the blood. The study compared different sample materials and methods for isolating EVs. We found distinct EV profiles in EVs derived from glioblastoma and human astrocytes, with signal intensities increasing as more EVs were present. Analyzing serum or plasma from patients with brain diseases and healthy individuals, we observed that EV marker intensities were varying between individuals. Importantly, data normalization improved the identification of disease-specific markers, such as CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis, which were significantly higher in disease compared to healthy controls. Advanced clustering analysis techniques effectively distinguished glioblastoma patients from controls. Furthermore, a potential correlation between CD107a+EVs and neurofilament levels in multiple sclerosis patients was discovered. Overall, the semi-quantitative EV Neuro assay proved useful for profiling EVs in complex samples. However, for more reliable results in biomarker studies, larger sample cohorts and higher effect sizes are necessary. Nonetheless, this initial trial confirmed the potential of the EV Neuro assay for discovering disease-associated EV markers and monitoring circulating EV profiles in CNS diseases.


Assuntos
Vesículas Extracelulares , Glioblastoma , Esclerose Múltipla , Humanos , Glioblastoma/metabolismo , Citometria de Fluxo , Sistema Nervoso Central , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Esclerose Múltipla/metabolismo
8.
J Extracell Vesicles ; 12(8): e12351, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525378

RESUMO

Although lipophilic membrane dyes (LMDs) or probes (LMPs) are widely used to label extracellular vesicles (EVs) for detection and purification, their labelling performance has not been systematically characterized. Through concurrent side scattering and fluorescence detection of single EVs as small as 40 nm in diameter by a laboratory-built nano-flow cytometer (nFCM), present study identified that (1) PKH67 and PKH26 could maximally label ∼60%-80% of EVs isolated from the conditioned cell culture medium (purity of ∼88%) and ∼40%-70% of PFP-EVs (purity of ∼73%); (2) excessive PKH26 could cause damage to the EV structure; (3) di-8-ANEPPS and high concentration of DiI could achieve efficient and uniform labelling of EVs with nearly 100% labelling efficiency for di-8-ANEPPS and 70%-100% for DiI; (4) all the four tested LMDs can aggregate and form micelles that exhibit comparable side scatter and fluorescence intensity with those of labelled EVs and thus hardly be differentiate from each other; (5) as the LMD concentration went up, the particle number of self-aggregates increased while the fluorescence intensity of aggregates remained constant; (6) PKH67 and PKH26 tend to form more aggregated micelles than di-8-ANEPPS and DiI, and the effect of LMD self-aggregation can be negligible at optimal staining conditions. (7) All the four tested LMDs can label almost all the very-low-density lipoprotein (VLDL) particles, indicating potential confounding factor in plasma-EV labelling. Besides, it was discovered that DSPE-PEG2000 -biotin can only label ∼50% of plasma-EVs. The number of LMP inserted into the membrane of single EVs was measured for the first time and it was confirmed that membrane labelling by lipophilic dyes did not interfere with the immunophenotyping of EVs. nFCM provides a unique perspective for a better understanding of EV labelling by LMD/LMP.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Micelas , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
9.
Microb Pathog ; 177: 106024, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758823

RESUMO

BACKGROUND: H. pylori are generally considered as extracellular organisms, with exclusive colonization of the gastric milieu. Yet, several extra gastric manifestations are associated with this infection. The aim of the present study was to investigate the feasibility of toxin transfer by extracellular vesicles, from bacterial and epithelial origins. METHODS: Tox-positive H. pylori and its two cagA and vacA mutant strains were used to produce bacterial vesicles (BVs) and to infect AGS cells. The produced BVs and the infected cell vesicles (ICVs) were collected by ultracentrifugation and evaluated by western blotting, DLS and electron microscopy. These two sets of vesicles were applied to a second set of recipient AGS cells, in which the acellular transfer of toxins, IL-8 production and downstream morphologic changes were assessed, by western blotting, ELISA and light microscopy, respectively. RESULTS: The BVs were positive for H. pylori membrane markers (BabA and UreB), VacA and CagA toxins, except for from the corresponding mutant strains. The ICVs were larger in size and positive for bacterial markers, as well as epithelial markers of CD9, LGR5, but negative for nuclear (Ki76) or cytoplasmic (ß-actin) markers. Bacteria-independent transfer of CagA and VacA into the recipient cells occurred upon treatment of cells with BVs and ICVs, followed by cellular vacuolation and elongation. IL-8 production was induced in recipient AGS cells, treated with BVs (1279.4 ± 19.79 pg/106 cells), early (8 h, 1171.4 ± 11.31 pg/106 cells) and late (48 h, 965.4 ± 36.77 pg/106 cells) ICVs (P < 0.0001). CONCLUSION: Our data indicates that ICVs, with mixed bacterial and epithelial constituents, similar to BVs, are capable of transferring bacterial toxins into the recipient cells, inducing IL-8 production and subsequent morphologic changes, in an acellular manner.


Assuntos
Vesículas Extracelulares , Infecções por Helicobacter , Helicobacter pylori , Humanos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Vesículas Extracelulares/metabolismo , Infecções por Helicobacter/metabolismo
10.
Cytotherapy ; 25(4): 387-396, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599771

RESUMO

Extracellular vesicles (EVs) are widely implicated as novel diagnostic and therapeutic modalities for a wide range of diseases. Thus, optimization of EV biomanufacturing is of high interest. In the course of developing parameters for a human embryonic kidney cells (HEK293T) EV production platform, we examined the combinatorial effects of cell culture conditions (i.e., static versus dynamic) and isolation techniques (i.e., ultracentrifugation versus tangential flow filtration versus size-exclusion chromatography) on functional characteristics of HEK293T EVs, including anti-inflammatory bioactivity using a well-established lipopolysaccharide-stimulated mouse macrophage model. We unexpectedly found that, depending on culture condition and isolation strategy, HEK293T EVs appeared to significantly suppress the secretion of pro-inflammatory cytokines (i.e., interleukin-6, RANTES [regulated upon activation, normal T cell expressed and secreted]) in the stimulated mouse macrophages. Further examination revealed that these results were most likely due to non-EV fetal bovine serum components in HEK293T EV preparations. Thus, future research assessing the anti-inflammatory effects of EVs should be designed to account for this phenomenon.


Assuntos
Vesículas Extracelulares , Animais , Camundongos , Humanos , Células HEK293 , Vesículas Extracelulares/fisiologia , Citocinas , Técnicas de Cultura de Células , Anti-Inflamatórios/farmacologia
11.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675188

RESUMO

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
12.
J Affect Disord ; 323: 799-808, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563790

RESUMO

BACKGROUND: MicroRNA (miRNA) circulating in plasma has been proposed as biomarkers for a variety of diseases and stress measures, including depression, stress, and trauma. However, few studies have examined the relationship between stress and miRNA during pregnancy. METHODS: In this study, we examined associations between measures of stress and depression during pregnancy with miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, California. Extracellular-vesicle- (EV-) associated miRNA were isolated from maternal plasma and quantified using the Nanostring nCounter platform. Correlations for stress-associated miRNA were also calculated for 89 matching cord blood samples. RESULTS: Fifty miRNA were nominally associated with depression, perceived stress, and prenatal distress (raw p < 0.05) with 17 miRNA shared between two or more stress measures. Two miRNA (miR-150-5p and miR-148b-3p) remained marginally significant after FDR adjustment (p < 0.10). Fifteen PANTHER pathways were enriched for predicted gene targets of the 50 miRNA associated with stress. Clusters of maternal and neonate miRNA expression suggest a link between maternal and child profiles. LIMITATIONS: The study evaluated 142 miRNA and was not an exhaustive analysis of all discovered miRNA. Evaluations for stress, depression and trauma were based on self-reported instruments, rather than diagnostic tools. CONCLUSIONS: Depression and stress during pregnancy are associated with some circulating EV miRNA. Given that EV miRNA play important roles in maternal-fetal communication, this may have downstream consequences for maternal and child health, and underscore the importance of addressing mental health during pregnancy, especially in health disparities populations.


Assuntos
MicroRNA Circulante , MicroRNAs , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Depressão/genética , Família , Estresse Psicológico/genética , Vesículas Extracelulares
13.
Anal Bioanal Chem ; 415(7): 1287-1298, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35945289

RESUMO

Extracellular vesicles (EVs) have emerged as an attractive drug delivery system owing to their natural roles in intercellular communication. On account of the large intrinsic heterogeneity of EVs, it is highly desirable to evaluate not only the encapsulation efficiency but also the alteration of biological functionality after the drug-loading process at the single-particle level. However, the nanoscale size of EVs poses a great challenge. Taking advantage of nano-flow cytometry (nFCM) in the multiparameter analysis of single EVs as small as 40 nm, six commonly used drug-loading strategies (coincubation, electroporation, extrusion, freeze-thawing, sonication, and surfactant treatment) were exploited by employing doxorubicin (Dox) as the model drug. Encapsulation ratio, EV concentration, drug content, and membrane proteins of Dox-loaded EVs were measured at the single-particle level. Our data indicated that coincubation and electroporation outperformed other methods with an encapsulation ratio of approximately 45% and a higher Dox content in single EVs. Interestingly, the labeling ratios of membrane proteins indicated that varying degrees of damage to the surface proteins of EVs occurred upon extrusion, freeze-thawing, sonication, and surfactant treatment. Confocal fluorescence microscopy and flow cytometry analysis revealed that Dox-loaded EVs prepared by electroporation induced the strongest apoptosis followed by coincubation. These results correlated well with their cellular uptake rate and fundamentally with the Dox encapsulation efficiency of single EVs. nFCM provides a rapid and sensitive platform for single-particle assessment of drug-loading strategies for incorporating drugs into EVs.


Assuntos
Vesículas Extracelulares , Preparações Farmacêuticas/metabolismo , Vesículas Extracelulares/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Eletroporação/métodos , Tensoativos
14.
Exp Mol Med ; 54(9): 1586-1595, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36180580

RESUMO

Although mounting evidence suggests that the microbiome has a tremendous influence on intractable disease, the relationship between circulating microbial extracellular vesicles (EVs) and respiratory disease remains unexplored. Here, we developed predictive diagnostic models for COPD, asthma, and lung cancer by applying machine learning to microbial EV metagenomes isolated from patient serum and coded by their accumulated taxonomic hierarchy. All models demonstrated high predictive strength with mean AUC values ranging from 0.93 to 0.99 with various important features at the genus and phylum levels. Application of the clinical models in mice showed that various foods reduced high-fat diet-associated asthma and lung cancer risk, while COPD was minimally affected. In conclusion, this study offers a novel methodology for respiratory disease prediction and highlights the utility of serum microbial EVs as data-rich features for noninvasive diagnosis.


Assuntos
Asma , Vesículas Extracelulares , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Algoritmos , Animais , Asma/diagnóstico , Asma/etiologia , Neoplasias Pulmonares/etiologia , Aprendizado de Máquina , Camundongos , Medição de Risco
15.
Reprod Biomed Online ; 45(3): 457-472, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732548

RESUMO

RESEARCH QUESTION: Does pre-implantation uterine fluid lavage (UFL) of patients undergoing IVF and frozen embryo transfer (FET) affect implantation and clinical pregnancy rates? Which methods among ultracentrifugation, sucrose cushion and qEV column are suitable for isolating UFL extracellular vesicles? DESIGN: First, UFL was collected from 20 patients undergoing IVF and FET 2 days before embryo transfer as the case group. The control group consisted of 20 patients undergoing IVF and FET patients without lavage. All patients were monitored for 6 weeks. In the next step, the UFLs (n = 30) were collected and pooled. The UFL-derived extracellular vesicles were extracted by ultracentrifugation, sucrose cushion and qEV column methods and characterized. RESULTS: Preimplantation uterine lavage sampling did not affect implantation and clinical pregnancy rates. Extracellular vesicles were successfully isolated from UFL by all three methods. Scanning electron microscopy and dynamic light scattering analysis showed that the isolated vesicles were morphologically spherical. The qEV technique showed that they were smaller and homogenized in size. SDS-PAGE of extracellular vesicles showed a weaker albumin band in the qEV column. Western blot analysis indicated that the isolated extracellular vesicles by the qEV column were more immunoreactive for all the common extracellular vesicle markers (CD81, CD9, CD63, and TSG101). Six reference genes were compared by real-time polymerase chain reaction in the isolated extracellular vesicle subpopulations, and lowest cycle threshold value was observed for the 18SrRNA gene. CONCLUSIONS: The isolation of endometrial secretome extracellular vesicles is a minimally invasive procedure for individual assessment of endometrial receptivity and can be carried out during conception cycles along with transvaginal ultrasonography. Molecular analysis of UFL-derived extracellular vesicle components could suggest biomarkers to determine precise extracellular vesicle timing.


Assuntos
Vesículas Extracelulares , Irrigação Terapêutica , Biomarcadores , Transferência Embrionária/métodos , Endométrio , Feminino , Humanos , Gravidez , Sacarose
16.
J Extracell Vesicles ; 11(4): e12208, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383410

RESUMO

Extracellular vesicles (EVs) are of growing interest due to their potential diagnostic, disease surveillance, and therapeutic applications. While several studies have evaluated EV isolation methods in various biofluids, there are few if any data on these techniques when applied to stool. The latter is an ideal biospecimen for studying EVs and colorectal cancer (CRC) because the release of tumour markers by luminal exfoliation into stool occurs earlier than vascular invasion. Since EV release is a conserved mechanism, bacteria in stool contribute to the overall EV population. In this study, we assessed five EV separation methods (ultracentrifugation [UC], precipitation [EQ-O, EQ-TC], size exclusion chromatography [SEC], and ultrafiltration [UF]) for total recovery, reproducibility, purity, RNA composition, and protein expression in stool supernatant. CD63, TSG101, and ompA proteins were present in EV fractions from all methods except UC. Human (18s) and bacterial (16s) rRNA was detected in stool EV preparations. Enzymatic treatment prior to extraction is necessary to avoid non-vesicular RNA contamination. Ultrafiltration had the highest recovery, RNA, and protein yield. After assessing purity further, SEC was the isolation method of choice. These findings serve as the groundwork for future studies that use high throughput omics technologies to investigate the potential of stool-derived EVs as a source for novel biomarkers for early CRC detection.


Assuntos
Vesículas Extracelulares , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Humanos , Reprodutibilidade dos Testes , Ultracentrifugação , Ultrafiltração
17.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328679

RESUMO

Osteosarcoma (OS) is a highly malignant bone tumour that has seen little improvement in treatment modalities in the past 30 years. Understanding what molecules contribute to OS biology could aid in the discovery of novel therapies. Extracellular vesicles (EVs) serve as a mode of cell-to-cell communication and have the potential to uncover novel protein signatures. In our research, we developed a novel pipeline to isolate, characterize, and profile EVs from normal bone and osteosarcoma tissue explants from canine OS patients. Proteomic analysis of vesicle preparations revealed a protein signature related to protein metabolism. One molecule of interest, PSMD14/Rpn11, was explored further given its prognostic potential in human and canine OS, and its targetability with the drug capzimin. In vitro experiments demonstrated that capzimin induces apoptosis and reduces clonogenic survival, proliferation, and migration in two metastatic canine OS cell lines. Capzimin also reduces the viability of metastatic human OS cells cultured under 3D conditions that mimic the growth of OS cells at secondary sites. This unique pipeline can improve our understanding of OS biology and identify new prognostic markers and molecular targets for both canine and human OS patients.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Osteossarcoma , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cães , Vesículas Extracelulares/metabolismo , Humanos , Osteossarcoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Transativadores/metabolismo
18.
Adv Sci (Weinh) ; 9(15): e2103222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332686

RESUMO

Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/química , Exossomos/metabolismo , Desenvolvimento Industrial , Proteínas/metabolismo
19.
Eur J Pharm Sci ; 172: 106135, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121019

RESUMO

Extracellular vesicles (EVs) are a complex and heterogeneous population of nanoparticles involved in cell-to-cell communication. Recently, numerous studies have indicated the potential of EVs as therapeutic agents, drug carriers and diagnostic tools. However, the results of these studies are often difficult to evaluate, since different characterization methods are used to assess the purity, physical and biochemical characteristics of the EV samples. In this study, we compared four methods for the EV sample characterization and purity assessment: i) the particle-to-protein ratio based on particle analyses with nanoparticle tracking and protein concentration by bicinchoninic acid assay, ii) Western Blot analysis for specific EV biomarkers, iii) two spectroscopic lipid-to-protein ratios by either the attenuated total reflection Fourier transform infrared (ATR-FTIR) or Raman spectroscopy. The results confirm the value of Raman and ATR-FTIR spectroscopy as robust, fast and operator independent tools that require only a few microliters of EV sample. We propose that the spectroscopic lipid-to-protein (Li/Pr) ratios are reliable parameters for the purity assessment of EV preparations. Moreover, apart from determining protein concentrations, we show that ATR-FTIR spectroscopy can also be used for indirect measurements of EV concentrations. Nevertheless, the Li/Pr ratios do not represent full characterization of the EV preparations. For a complete characterization of selected EV preparations, we recommend also additional use of particle size distribution and EV biomarker analysis.


Assuntos
Vesículas Extracelulares , Análise Espectral Raman , Portadores de Fármacos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/análise , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Small Methods ; 6(2): e2100785, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174988

RESUMO

Extracellular vesicles (EVs) are released by all types of mammalian cells for cell-cell communication. In this study, surface glycans on EVs are compared in terms of their cell type, size, and isolation method to examine whether EV glycan profiles by lectin microarray can be used to define EV subpopulations. Moreover, EVs are glycoengineered with four distinctive surface glycan patterns and evaluated their cellular uptake efficiencies for potential drug delivery applications. Both similarities and differences in glycan patterns are identified on EVs obtained under each experimental condition. EV size- and isolation method-dependent lectin-binding patterns are observed. Moreover, cellular uptake behaviors of EVs are affected by EV glycan profiles and acceptor cells. The in vivo biodistribution of EVs is also dependent on their glycan profile. These results suggest that EV surface glycans are a potential novel indicator of EV heterogeneity, and glycoengineering is a useful approach to regulate cell-EV interactions for biomedical applications.


Assuntos
Vesículas Extracelulares/transplante , Lectinas/metabolismo , Análise em Microsséries/métodos , Polissacarídeos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Vesículas Extracelulares/metabolismo , Células HCT116 , Células HT29 , Humanos , Injeções Intravenosas , Camundongos , Células PC-3 , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA