Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Methods Mol Biol ; 2829: 21-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951325

RESUMO

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vetores Genéticos/genética , Células Sf9 , Expressão Gênica , Humanos , Insetos/genética , Spodoptera , Linhagem Celular , Recombinação Homóloga , Análise Custo-Benefício
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791184

RESUMO

Recombinant adeno-associated virus (rAAV) has emerged as a prominent vector for in vivo gene therapy, owing to its distinct advantages. Accurate determination of the rAAV genome titer is crucial for ensuring the safe and effective administration of clinical doses. The evolution of the rAAV genome titer assay from quantitative PCR (qPCR) to digital PCR (dPCR) has enhanced accuracy and precision, yet practical challenges persist. This study systematically investigated the impact of various operational factors on genome titration in a single-factor manner, aiming to address potential sources of variability in the quantitative determination process. Our findings revealed that a pretreatment procedure without genome extraction exhibits superior precision compared with titration with genome extraction. Additionally, notable variations in titration results across different brands of dPCR instruments were documented, with relative standard deviation (RSD) reaching 23.47% for AAV5 and 11.57% for AAV8. Notably, optimal operations about DNase I digestion were identified; we thought treatment time exceeding 30 min was necessary, and there was no need for thermal inactivation after digestion. And we highlighted that thermal capsid disruption before serial dilution substantially affected AAV genome titers, causing a greater than ten-fold decrease. Conversely, this study found that additive components of dilution buffer are not significant contributors to titration variations. Furthermore, we found that repeated freeze-thaw cycles significantly compromised AAV genome titers. In conclusion, a comprehensive dPCR titration protocol, incorporating insights from these impact factors, was proposed and successfully tested across multiple serotypes of AAV. The results demonstrate acceptable variations, with the RSD consistently below 5.00% for all tested AAV samples. This study provides valuable insights to reduce variability and improve the reproducibility of AAV genome titration using dPCR.


Assuntos
Dependovirus , Vetores Genéticos , Genoma Viral , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Células HEK293 , Terapia Genética/métodos , Carga Viral
3.
Artigo em Inglês | MEDLINE | ID: mdl-38821669

RESUMO

Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.


Assuntos
Edição de Genes , Terapia Genética , Terapia Genética/métodos , Terapia Genética/efeitos adversos , Humanos , Edição de Genes/métodos , Animais , Dependovirus/genética , Vetores Genéticos , Sistemas CRISPR-Cas , Lentivirus/genética , Endonucleases/genética , Endonucleases/metabolismo , Testes de Mutagenicidade/métodos , Nucleotídeos
4.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484704

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vetores Genéticos/genética
5.
ACS Synth Biol ; 13(3): 745-751, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377591

RESUMO

Commercially synthesized genes are typically made using variations of homology-based cloning techniques, including polymerase cycling assembly from chemically synthesized microarray-derived oligonucleotides. Here, we apply Data-optimized Assembly Design (DAD) to the synthesis of hundreds of codon-optimized genes in both constitutive and inducible vectors using Golden Gate Assembly. Starting from oligonucleotide pools, we synthesize genes in three simple steps: (1) amplification of parts belonging to individual assemblies in parallel from a single pool; (2) Golden Gate Assembly of parts for each construct; and (3) transformation. We construct genes from receiving DNA to sequence confirmed isolates in as little as 4 days. By leveraging the ligation fidelity afforded by T4 DNA ligase, we expect to be able to construct a larger breadth of sequences not currently supported by homology-based methods, which require stability of extensive single-stranded DNA overhangs.


Assuntos
Oligonucleotídeos , Biologia Sintética , Oligonucleotídeos/genética , Biologia Sintética/métodos , DNA/genética , DNA de Cadeia Simples/genética , Clonagem Molecular , Vetores Genéticos
6.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38384245

RESUMO

Inherited genetic disorders are progressive in nature and lead to organ dysfunction or death in severe cases. At present, there are no permanent treatment options for >95% of inherited disorders. Different modes of inheritance, type of gene(s) involved, and population-based variations add further complexity to finding suitable cures for approximately 400 million patients worldwide. Gene therapy is a very promising molecular technique for the treatment of rare genetic disorders. Gene therapy functions on the basis of restoration, replacement, inhibition, and, most recently, editing of gene(s) to rescue the disease phenotype. Recent reports show that increasing numbers of gene therapy clinical trials are using viral vectors (64.2%) when compared with non-viral vectors. Rapid development of efficient viral vector systems like the adeno-associated virus (AAV) and lentivirus has significantly contributed to this progress. Notably, AAV-mediated gene therapy has shown high potential for genetic disease treatment as evident from recent clinical trials for the eye (NCT00999609), blood (NCT00979238), and neuro-muscular systems (NCT02122952). Safety and efficacy are the two most critical features required for vector(s) to qualify for pre-clinical and clinical trial approval. The process of clinical-grade vector production, evaluation, and approvals for gene therapy products requires significant technological development, knowledge enhancement, and large financial investments. Additionally, trained manpower is required to meet the demands for constant technical innovation. These factors together contribute towards exorbitant prices for every dose of a gene therapy product and thus pose a challenge for the gene therapy field. The Indian subcontinent has traditionally lagged behind North America, Europe, Japan, and others in gene therapy clinical trials due to factors like inadequate industrial-scientific infrastructure, lack of accessible and organized patient databases, low financial investments, etc. However, over the last decade, increasing awareness of rare diseases, and international approvals of gene therapies such as Luxturna, Zolgensma, Hemgenix, etc., have spurred gene therapy development in India as well. In view of these advances, this article outlines gene therapy research, regulatory processes, and the launch of gene therapy clinical trials in India in the context of major developments worldwide. We briefly describe ongoing gene therapy research across Indian organizations and the nascent gene therapy product manufacturing. Further, we highlight the various initiatives from the medical and patient community to avail rehabilitation and gene therapy options. We briefly discuss the roles of regulatory agencies and guidelines for gene therapy clinical trials in India. We anticipate that this concise review will highlight the promise of gene therapy for the large population of rare disease patients in India.


Assuntos
Ensaios Clínicos como Assunto , Terapia Genética , Humanos , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Índia , Lentivirus/genética
7.
Gene Ther ; 31(5-6): 273-284, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38355967

RESUMO

Adeno-associated virus (AAV) based gene therapy has demonstrated effective disease control in hemophilia. However, pre-existing immunity from wild-type AAV exposure impacts gene therapy eligibility. The aim of this multicenter epidemiologic study was to determine the prevalence and persistence of preexisting immunity against AAV2, AAV5, and AAV8, in adult participants with hemophilia A or B. Blood samples were collected at baseline and annually for ≤3 years at trial sites in Austria, France, Germany, Italy, Spain, and the United States. At baseline, AAV8, AAV2, and AAV5 neutralizing antibodies (NAbs) were present in 46.9%, 53.1%, and 53.4% of participants, respectively; these values remained stable at Years 1 and 2. Co-prevalence of NAbs to at least two serotypes and all three serotypes was present at baseline for ~40% and 38.2% of participants, respectively. For each serotype, ~10% of participants who tested negative for NAbs at baseline were seropositive at Year 1. At baseline, 38.3% of participants had detectable cell mediated immunity by ELISpot, although no correlations were observed with the humoral response. In conclusion, participants with hemophilia may have significant preexisting immunity to AAV capsids. Insights from this study may assist in understanding capsid-based immunity trends in participants considering AAV vector-based gene therapy.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Dependovirus , Terapia Genética , Hemofilia A , Humanos , Dependovirus/imunologia , Dependovirus/genética , Masculino , Hemofilia A/imunologia , Hemofilia A/terapia , Adulto , Estudos Longitudinais , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Terapia Genética/métodos , Imunidade Adaptativa , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
8.
Hum Gene Ther ; 35(13-14): 506-516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38264994

RESUMO

Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8+) and helper (CD4+) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens. For method optimization, peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors and stimulated with commercially available major histocompatibility complex (MHC) class I or II-specific peptides as positive controls. Peptide pools were designed from published AAV8 and AAV9 capsid protein sequences and then used to assess the presence of AAV-specific T cell responses. Our results demonstrate a measurable increase in IFNγ and IL-2-producing cells after AAV peptide presentation. Furthermore, there was an observed difference in the magnitude and specificity of response to peptide pools based on AAV serotype and donor. Finally, using individual peptides, we identified a region of the AAV9 capsid protein that can elicit an immunogenic response. This work shows the applicability of ELISpot in assessing anti-AAV immune responses and provides insight into how novel recombinant AAV vectors could be designed to reduce immunogenic potential.


Assuntos
Dependovirus , ELISPOT , Vetores Genéticos , Interferon gama , Interleucina-2 , Peptídeos , Dependovirus/genética , Dependovirus/imunologia , Humanos , ELISPOT/métodos , Vetores Genéticos/genética , Interferon gama/metabolismo , Interferon gama/imunologia , Peptídeos/imunologia , Interleucina-2/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Terapia Genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Biotechnol Prog ; 40(1): e3397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37843875

RESUMO

Vaccine manufacturing strategies that lower capital and production costs could improve vaccine access by reducing the cost per dose and encouraging localized manufacturing. Continuous processing is increasingly utilized to drive lower costs in biological manufacturing by requiring fewer capital and operating resources. Aqueous two-phase systems (ATPS) are a liquid-liquid extraction technique that enables continuous processing for viral vectors. To date, no economic comparison between viral vector purifications using traditional methods and ATPS has been published. In this work, economic simulations of traditional chromatography-based virus purification were compared to ATPS-based virus purification for the same product output in both batch and continuous modes. First, the modeling strategy was validated by re-creating a viral subunit manufacturing economic simulation. Then, ATPS capital and operating costs were compared to that of a traditional chromatography purification at multiple scales. At all scales, ATPS purification required less than 10% of the capital expenditure compared to chromatography-based purification. At an 11 kg per year production scale, the ATPS production costs were 50% less than purification with chromatography. Other chromatography configurations were explored, and may provide a production cost benefit to ATPS, but the purity and recovery were not experimentally verified. Batch and continuous ATPS were similar in capital and production costs. However, manual price adjustments suggest that continuous ATPS plant-building costs could be less than half that of batch ATPS at the 11 kg per year production scale. These simulations show the significant reduction in manufacturing costs that ATPS-based purification could deliver to the vaccine industry.


Assuntos
Cromatografia , Vacinas , Extração Líquido-Líquido , Vetores Genéticos
10.
AAPS J ; 25(6): 101, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891410

RESUMO

The prediction of transgene product expression in human is important to guide first-in-human (FIH) dose selection for viral vector-based gene replacement therapies. Recently, allometric scaling from preclinical data and interspecies normalization of dose-response (D-R) relationship have been used to predict human transgene product expression of adeno-associated virus (AAV) vectors. In this study, we assessed two interspecies allometric scaling methods and two dose-response methods in predicting human transgene product expression of nine intravenously administered AAV vectors, one intramuscularly administered AAV vector, and one intravesical administered adenoviral vector. Among the four methods, normalized D-R method generated the highest prediction accuracy, with geometric mean fold error (GMFE) of 2.9 folds and 75% predictions within fivefold deviations of observed human transgene product levels. The vg/kg-based D-R method worked well for locally delivered vectors but substantially overpredicted human transgene product levels of some hemophilia A and B vectors. For both intravenously and locally administered vectors, the prediction accuracy of allometric scaling using body weight^-0.25 (AS by W^-0.25) was superior to allometric scaling using log(body weight) (AS by logW). This study successfully extended the use of allometric scaling and interspecies D-R normalization methods for human transgene product prediction from intravenous viral vectors to locally delivered viral vectors.


Assuntos
Terapia Genética , Hemofilia A , Humanos , Transgenes/genética , Vetores Genéticos/genética , Peso Corporal
11.
Biotechniques ; 75(4): 168-178, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815818

RESUMO

With advancements in multicomponent molecular biological tools, the need for versatile, rapid and cost-effective cloning that enables successful combinatorial assembly of DNA plasmids of interest is becoming increasingly important. Unfortunately, current cloning platforms fall short regarding affordability, ease of combinatorial assembly and, above all, the ability to iteratively remove individual cassettes at will. Herein we construct, implement and make available a broad set of cloning vectors, called PlayBack vectors, that allow for the expression of several different constructs simultaneously under separate promoters. Overall, this system is substantially cheaper than other multicomponent cloning systems, has usability for a wide breadth of experimental paradigms and includes the novel feature of being able to selectively remove components of interest at will at any stage of the cloning platform.


Assuntos
DNA , Vetores Genéticos , Vetores Genéticos/genética , Análise Custo-Benefício , Plasmídeos/genética , Clonagem Molecular
12.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37624734

RESUMO

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Assuntos
Dependovirus , Doenças do Sistema Nervoso , Animais , Dependovirus/genética , Radioisótopos do Iodo , Capsídeo , Distribuição Tecidual , Transdução Genética , Terapia Genética/métodos , Tomografia por Emissão de Pósitrons , Vetores Genéticos/genética , Técnicas de Transferência de Genes
13.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511179

RESUMO

Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and integrity of muscle fibers. Gene replacement strategies for Duchenne muscular dystrophy (DMD) employing the adeno-associated virus (AAV) face the challenge imposed by the limited packaging capacity of AAV, only allowing the accommodation of a short version of dystrophin (µDys) that is still far removed from correcting human disease. The need to develop strategies leading to the expression of a best performing dystrophin variant led to only few studies reporting on the use of dual vectors, but none reported on a method to assess in vivo transgene reconstitution efficiency, the degree of which directly affects the use of safe AAV dosing. We report here on the generation of a dual AAV vector approach for the expression of a larger dystrophin version (quasidystrophin) based on homologous recombination, and the development of a methodology employing a strategic droplet digital PCR design, to determine the recombination efficiency as well as the occurrence of unwanted concatemerization events or aberrant expression from the single vectors. We demonstrated that, upon systemic delivery in the dystrophic D2.B10-Dmdmdx/J (DBA2mdx) mice, our dual AAV approach led to high transgene reconstitution efficiency and negligible Inverted Terminal Repeats (ITR)-dependent concatemerization, with consequent remarkable protein restoration in muscles and improvement of muscle pathology. This evidence supports the suitability of our system for gene therapy application and the potential of this methodology to assess and improve the feasibility for therapeutic translation of multiple vector approaches.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Humanos , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Vetores Genéticos/genética
14.
Drug Discov Today ; 28(7): 103610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169134

RESUMO

Advanced therapy medicinal products are a reality. With the opportunity to treat patients at the genetic level, the pharmaceutical industry has extended the treatment paradigm to innovative and potentially curative approaches. Gene therapy modifies or manipulates the expression of a gene, through gene repair, replacement, or modification, to alter living cells for therapeutic use, requiring delivery mechanisms through viral vectors. Market analysis not only demonstrates that the gene therapy sector has strong growth potential, but also indicates infancy with the number of currently approved products. Within gene therapy, adeno-associated viruses (AAVs) have high prominence, allowing for the targeted delivery of a transgene for therapeutic effect. To be able to realise the full potential of AAV-based gene therapy, focus has shifted to the ability to manufacture and deliver high titre, high quality, and efficacious product. However, manufacturing is not simple, with multiple complex challenges ranging from starting material generation, ensuring cellular production of high titres of viral vectors, to purification, where not all AAV particles contain the intended genetic payload. As an industry, we must learn from established manufacturing processes, such as for monoclonal antibodies (mAbs), to deliver rapidly scalable, robust, and cost-effective platform solutions that can be truly multiproduct, while working hand-in-hand with regulatory agencies. Additionally future innovation remains important and there are several opportunities for disruptive and further advanced manufacturing approaches. With a true end in mind approach, can we turn the tide from treatment to cure?


Assuntos
Terapia Genética , Vetores Genéticos , Humanos , Indústria Farmacêutica , Comércio
15.
Hum Gene Ther ; 34(15-16): 697-704, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171121

RESUMO

Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.


Assuntos
Herpesvirus Humano 1 , Camundongos , Animais , Humanos , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vetores Genéticos/genética , DNA
16.
Anal Chem ; 95(22): 8478-8486, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219094

RESUMO

After decades of research, gene therapy products have reached market maturity in recent years. Recombinant adeno-associated viruses (rAAVs) are one of the most promising gene delivery vehicles and are currently under intense scientific investigation. These next-generation medicines remain very challenging when it comes to designing appropriate analytical techniques for quality control. One critical quality attribute is the integrity of ssDNA incorporated in these vectors. The genome is the active compound driving rAAV therapy and therefore requires proper assessment and quality control. Current techniques for rAAV genome characterization include next-generation sequencing, quantitative polymerase chain reaction, analytical ultracentrifugation (AUC), and capillary gel electrophoresis (CGE), yet each of them presents their limitations or lack of user-friendliness. In this work, we demonstrate for the first time the potential of ion pairing-reverse phase-liquid chromatography (IP-RP-LC) to characterize the integrity of rAAV genomes. The obtained results were supported by two orthogonal techniques, AUC and CGE. IP-RP-LC can be performed above DNA melting temperatures, avoiding the detection of secondary DNA isoforms, and does not require the use of dyes due to UV detection. We demonstrate that this technique is suitable for batch comparability, different rAAV serotypes (AAV2 and AAV8), internal vs external (inside vs outside the capsid) DNA analysis, and contaminated samples. Overall, it is exceptionally user-friendly, needs limited sample preparation, has high reproducibility, and permits fractionation for further peak characterization. All of these factors add significant value of IP-RP-LC to the analytical toolbox of rAAV genome assessment.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Reprodutibilidade dos Testes , Terapia Genética , Cromatografia Líquida , Dependovirus/genética
17.
J Biol Chem ; 299(5): 104639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965614

RESUMO

Luciferase-based gene reporters generating bioluminescence signals are important tools for biomedical research. Amongst the luciferases, flavin-dependent enzymes use the most economical chemicals. However, their applications in mammalian cells are limited due to their low signals compared to other systems. Here, we constructed Flavin Luciferase from Vibrio campbellii (Vc) for Mammalian Cell Expression (FLUXVc) by engineering luciferase from V. campbellii (the most thermostable bacterial luciferase reported to date) and optimizing its expression and reporter assays in mammalian cells which can improve the bioluminescence light output by >400-fold as compared to the nonengineered version. We found that the FLUXVc reporter gene can be overexpressed in various cell lines and showed outstanding signal-to-background in HepG2 cells, significantly higher than that of firefly luciferase (Fluc). The combined use of FLUXVc/Fluc as target/control vectors gave the most stable signals, better than the standard set of Fluc(target)/Rluc(control). We also demonstrated that FLUXVc can be used for testing inhibitors of the NF-κB signaling pathway. Collectively, our results provide an optimized method for using the more economical flavin-dependent luciferase in mammalian cells.


Assuntos
Biotecnologia , Genes Reporter , Luciferases , Medições Luminescentes , Animais , Genes Reporter/genética , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/normas , Mamíferos/metabolismo , Vibrio/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Vetores Genéticos , Biotecnologia/métodos
18.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927149

RESUMO

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Assuntos
Dependovirus , Fígado , Humanos , Dependovirus/genética , Fígado/metabolismo , Terapia Genética/métodos , Hepatócitos/metabolismo , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
19.
Gene Ther ; 30(1-2): 132-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35637286

RESUMO

Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues. We find that IST infusion leads to robust transgene expression in the striatum, thalamus and cortex with lower peripheral tissue transduction and anti-AAV9 capsid titers compared to ICM or LIT. ICM delivery provided strong GFP and luciferase expression across more brain regions than the other routes and similar expression in the spinal cord to LIT injections, which itself largely failed to transduce the rat brain. Our data highlight the strengths and weaknesses of each direct CNS delivery route which will help with future clinical targeting.


Assuntos
Técnicas de Transferência de Genes , Medula Espinal , Ratos , Animais , Transdução Genética , Medula Espinal/metabolismo , Encéfalo/metabolismo , Transgenes , Vetores Genéticos/genética , Dependovirus/genética , Dependovirus/metabolismo
20.
Methods Mol Biol ; 2587: 353-375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401038

RESUMO

The immune response is a primary hurdle in the development of gene therapy for neuromuscular diseases. Both innate and adaptive immune responses have been observed in human trials. The canine model is an excellent platform to understand immunological consequences of gene therapy. Over the last several decades, we have conducted gene replacement and gene repair therapies in the canine model of Duchenne muscular dystrophy (DMD) using adeno-associated virus (AAV)-mediated expression of the highly abbreviated micro-dystrophin gene, the larger mini-dystrophin gene, and the Cas9-based CRISPR genome editing machinery. We have evaluated the innate, humoral, and cellular immune responses to the AAV vector and the transgene product. In this chapter, we share our experience in collecting and processing of the dog blood samples for immunological assays, and our protocols for quantitative evaluation of cytokines and chemokines, antibodies, and T-cell responses.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Cães , Animais , Distrofina/genética , Distrofina/metabolismo , Vetores Genéticos/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Imunidade Humoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA