Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8017): 565-566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867009
2.
Proc Natl Acad Sci U S A ; 121(26): e2319971121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885375

RESUMO

Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks-the V and echelon formations of large birds-may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder, J. Exp. Biol. 226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2 production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects.


Assuntos
Metabolismo Energético , Voo Animal , Estorninhos , Animais , Voo Animal/fisiologia , Metabolismo Energético/fisiologia , Estorninhos/fisiologia , Estorninhos/metabolismo , Aves/fisiologia
3.
Sci Rep ; 14(1): 7298, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538653

RESUMO

A paradox of avian long-distance migrations is that birds must greatly increase their body mass prior to departure, yet this is presumed to substantially increase their energy cost of flight. However, here we show that when homing pigeons flying in a flock are loaded with ventrally located weight, both their heart rate and estimated energy expenditure rise by a remarkably small amount. The net effect is that costs per unit time increase only slightly and per unit mass they decrease. We suggest that this is because these homing flights are relatively fast, and consequently flight costs associated with increases in body parasite drag dominate over those of weight support, leading to an improvement in mass-specific flight economy. We propose that the relatively small absolute aerodynamic penalty for carrying enlarged fuel stores and flight muscles during fast flight has helped to select for the evolution of long-distance migration.


Assuntos
Columbidae , Voo Animal , Animais , Voo Animal/fisiologia , Columbidae/fisiologia , Metabolismo Energético/fisiologia , Músculos
4.
Insect Sci ; 31(2): 524-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37469199

RESUMO

The scaling of the energetic cost of locomotion with body mass is well documented at the interspecific level. However, methodological restrictions limit our understanding of the scaling of flight metabolic rate (MR) in free-flying insects. This is particularly true at the intraspecific level, where variation in body mass and flight energetics may have direct consequences for the fitness of an individual. We applied a 13C stable isotope method to investigate the scaling of MR with body mass during free-flight in the beetle Batocera rufomaculata. This species exhibits large intraspecific variation in adult body mass as a consequence of the environmental conditions during larval growth. We show that the flight-MR scales with body mass to the power of 0.57, with smaller conspecifics possessing up to 2.3 fold higher mass-specific flight MR than larger ones. Whereas the scaling exponent of free-flight MR was found to be like that determined for tethered-flight, the energy expenditure during free-flight was more than 2.7 fold higher than for tethered-flight. The metabolic cost of flight should therefore be studied under free-flight conditions, a requirement now enabled by the 13C technique described herein for insect flight.


Assuntos
Besouros , Animais , Metabolismo Energético , Insetos , Larva , Voo Animal
5.
PLoS One ; 18(5): e0284714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141190

RESUMO

Experimental characterization of bird flight without instrumenting the animal requires measuring the flow behind the bird in a wind tunnel. Models are used to link the measured velocities to the corresponding aerodynamic forces. Widely-used models can, however, prove inconsistent when evaluating the instantaneous lift. Yet, accurately estimating variations of lift is critical in order to reverse-engineer flapping flight. In this work, we revisit mathematical models of lift based on the conservation of momentum in a control volume around a bird. Using a numerical framework to represent a flapping bird wing and compute the flow around it, we mimic the conditions of a wind tunnel and produce realistic wakes, which we compare to experimental data. Providing ground truth measurements of the flow everywhere around the simulated bird, we assess the validity of several lift estimation techniques. We observe that the circulation-based component of the instantaneous lift can be retrieved from measurements of velocity in a single plane behind a bird, with a latency that is found to depend directly on the free-stream velocity. We further show that the lift contribution of the added-mass effect cannot be retrieved from such measurements and quantify the level of approximation due to ignoring this contribution in instantaneous lift estimation.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Aves , Asas de Animais
6.
Sci Rep ; 12(1): 22629, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587181

RESUMO

Migratory birds travel over impressively long distances. Consequently, they have to adopt flight regimes being both efficient-in order to spare their metabolic resources-and robust to perturbations. This paper investigates the relationship between both aspects, i.e., energetic performance and stability, in flapping flight of migratory birds. Relying on a poly-articulated wing morphing model and a tail-like surface, several families of steady flight regime have been identified and analysed. These families differ by their wing kinematics and tail opening. A systematic parametric search analysis has been carried out, in order to evaluate power consumption and cost of transport. A framework tailored for assessing limit cycles, namely Floquet theory, is used to numerically study flight stability. Our results show that under certain conditions, an inherent passive stability of steady and level flight can be achieved. In particular, we find that progressively opening the tail leads to passively stable flight regimes. Within these passively stable regimes, the tail can produce either upward or downward lift. However, these configurations entail an increase of cost of transport at high velocities penalizing fast forward flight regimes. Our model-based predictions suggest that long range flights require a furled tail configuration, as confirmed by field observations, and consequently need to rely on alternative mechanisms to stabilize the flight.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Aves , Fenômenos Biomecânicos , Asas de Animais
7.
Curr Biol ; 32(12): R672-R675, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728551

RESUMO

Emily Shepard introduces ways flying animals conserve energy inflight.


Assuntos
Metabolismo Energético , Voo Animal , Animais
8.
J Insect Sci ; 22(2)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303103

RESUMO

Heilipus lauri Boheman (Coleoptera: Curculionidae) is a specialist pest of avocado fruit and is considered an incursion risk for U.S. avocado producers. At the time work reported here was undertaken the flight capabilities of H. lauri were unknown. Consequently, proactive studies were undertaken to quantify aspects of this pest's flight capabilities to inform potential future control efforts. Flight mill studies were conducted in a quarantine laboratory to measure the dispersal capacity of H. lauri with respect to gender, mating status, and size on the single and repeat flight capabilities of weevils. Gender, mating status, and size did not significantly affect measured flight parameters. Average total distances flown and flight velocity, and mean maximum flight bout distances and durations significantly declined as weevil age increased and when weevils engaged in repeat flights. Survivorship rates were significantly reduced as the number of successive flights undertaken increased. The distribution of total average flight distances flown and total cumulative flight distances flown was platykurtic. The implications of these findings are discussed in terms of developing incursion management plans.


Assuntos
Besouros , Persea , Gorgulhos , Animais , Voo Animal , Reprodução
9.
Insect Sci ; 29(5): 1361-1372, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35142427

RESUMO

Rose chafer beetles (Protetia cuprea) are pollinators as well as agricultural pests, flying between flowers and trees while foraging for pollen and fruits. Calculating the energy they expend on flying during foraging activity faces the challenge of measuring the metabolic rate (MR) of free-flying insects in an open space. We overcame this challenge by using the bolus injection of 13 C Na-bicarbonate technique to measure their metabolic energy expenditure while flying in a large flight arena. Concurrently, we tracked the insects with high-speed cameras to extract their flight trajectory, from which we calculated the mechanical power invested in flying for each flight bout. We found that the chemical (metabolic) energy input converted to mechanical flight energy output at a mean efficiency of 10.4% ± 5.2%, with a trend of increased efficiency in larger conspecifics (efficiency scaled with body mass to the power of 1.4). The transition in the summer from a diet of pollen to that of fruits may affect the energy budget available for foraging. Starved P. cuprea, feeding on apples ad libitum, increased their body mass by an average of 6% in 2 h. According to our calculations, such a meal can power a 630-m flight (assuming a carbohydrate assimilation efficiency of 90%). Pollen, with a low water and carbohydrate content but rich in proteins and lipids, has a higher caloric content and should assimilate differently when converting food to flight fuel. The high cost of aerial locomotion is inherent to the foraging behavior of rose chafers, explaining their short flight bouts followed by prolonged feeding activity.


Assuntos
Besouros , Voo Animal , Animais , Bicarbonatos , Carboidratos , Metabolismo Energético , Insetos , Lipídeos , Água
10.
J Insect Physiol ; 131: 104224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33736984

RESUMO

Water salinity is a major driver of aquatic insects' distribution. Saline species are usually generalists with high survival and performance at both low and high salinity levels. Yet, costs of high salinity may be underestimated as these are most often measured in terms of larval life history traits, while effects of larval stressors may only be detectable when looking at physiological traits and traits in the adult stage. Here, we assessed the lethal and sublethal physiological effects of embryonic and larval exposure to a range of salinity levels in the damselfly Lestes macrostigma, both during and after metamorphosis. This species inhabits temporary freshwaters where salinity increases during the drying phase. Salinity had no effect on egg hatching success within the range 2-9.5 g/L sea salt (conductivity range 3.45-14.52 mS/cm). With increasing salinity (up to 16 g/L, 23.35 mS/cm), growth rate decreased and larvae took longer to emerge and did so at a smaller size. Larval survival to metamorphosis increased with salinity up to 8 g/L (12.45 mS/cm) and then declined at 16 g/L. Exposure to salinity in the larval stage had no effect across metamorphosis on both the adult thorax muscle mass and flight performance, and the investment in immune function. Increasing salinity in the larval stage also had no effect on the energy available but increased the energy consumption in the adult stage, resulting in a lower net energy budget. These negative sublethal effects of increasing salinity hence bridged metamorphosis and contrasted with the mortality data, suggesting that the higher mortality at the low salinity levels selected for larvae with the best body condition. Our results highlight the importance of taking into account other life-history and physiological traits, besides mortality, ideally across different life stages, to better understand and predict consequences of increasing salinization on freshwater insects.


Assuntos
Odonatos/crescimento & desenvolvimento , Tolerância ao Sal/fisiologia , Animais , Voo Animal , Larva/crescimento & desenvolvimento , Características de História de Vida , Óvulo/fisiologia , Salinidade
11.
J Vis Exp ; (178)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35037664

RESUMO

Sampling methods are selected depending on the targeted species or the spatial and temporal requirements of the study. However, most methods for passive sampling of flying insects have a poor temporal resolution because it is time-consuming, costly and/or logistically difficult to perform. Effective sampling of flying insects attracted to artificial light at night (ALAN) requires sampling at user-defined time points (nighttime only) across well-replicated sites resulting in major time and labor-intensive survey effort or expensive automated technologies. Described here is a low-cost automated intercept trap that requires no specialist equipment or skills to construct and operate, making it a viable option for studies that require temporal sub-sampling across multiple sites. The trap can be used to address a wide range of other ecological questions that require a greater temporal and spatial scale than is feasible with previous trap technology.


Assuntos
Insetos , Poluição Luminosa , Animais , Voo Animal
12.
Elife ; 92020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306947

RESUMO

Elite human and animal athletes must acquire the fuels necessary for extreme feats, but also contend with the oxidative damage associated with peak metabolic performance. Here, we show that a migratory bird with fuel stores composed of more omega-6 polyunsaturated fats (PUFA) expended 11% less energy during long-duration (6 hr) flights with no change in oxidative costs; however, this short-term energy savings came at the long-term cost of higher oxidative damage in the omega-6 PUFA-fed birds. Given that fatty acids are primary fuels, key signaling molecules, the building blocks of cell membranes, and that oxidative damage has long-term consequences for health and ageing, the energy savings-oxidative cost trade-off demonstrated here may be fundamentally important for a wide diversity of organisms on earth.


Assuntos
Comportamento Animal , Metabolismo Energético , Ácidos Graxos Ômega-6/metabolismo , Voo Animal , Estresse Oxidativo , Resistência Física , Estorninhos/metabolismo , Adaptação Fisiológica , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Estado Nutricional , Condicionamento Físico Animal , Fatores de Tempo
13.
Sci Rep ; 10(1): 19627, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184337

RESUMO

Birdstrikes are an important threat to aviation safety. A standardized, scientific process for assessing birdstrike risk could prevent accidents, thereby improving the flight safety and reducing economic losses. However, China currently lacks a unified birdstrike risk assessment system. Here, we propose and validate a new model for assessing birdstrike risk in order to fill that need. The model consists of two elements. First, empirical data are collected on the occurrence of birds at the airport and in a surrounding 8 km buffer. Second, each species is evaluated with a risk assessment matrix that takes into account the number of birds, weight, flight altitude, a tendency to cluster, and range of activity. These five factors allow each species to be divided into one of three risk levels: high danger (level 3), moderate danger (level 2) and low danger (level 1). We propose corresponding birdstrike prevention measures for each level. We apply this method to the civil aviation airport in Ordos, China. We found that 20 of the 118 species of birds in and around the airport were high danger birds (level 3). To validate this process, we compared these species with records of birdstrike accidents in a database maintained by the Civil Aviation Administration of China (CAAC) for 2007-2016. We found that 42% of the species we identified as high risk had been involved in at least one birdstrike accident, and that the remaining 58% belonged to families that appeared in the database. The high degree of overlap gives us high confidence in the practicality of our risk assessment model, which is based on the risk management concept of ISO 31000. Critically, this new model and method for predicting bird strike risk can be replicated at other airports around the world, even where no extensive records have been kept of past birdstrikes.


Assuntos
Acidentes Aeronáuticos/prevenção & controle , Acidentes Aeronáuticos/estatística & dados numéricos , Aeroportos/estatística & dados numéricos , Comportamento Animal/fisiologia , Aves , Voo Animal/fisiologia , Modelos Estatísticos , Medição de Risco/métodos , Animais , Aves/classificação , China , Bases de Dados como Assunto , Risco , Gestão de Riscos , Segurança
14.
J Insect Physiol ; 126: 104098, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798499

RESUMO

Aedes aegypti adult females are key vectors of several arboviruses and flight activity plays a central role in mosquito biology and disease transmission. Available methods to quantify mosquito flight usually require special devices and mostly assess spontaneous locomotor activity at individual level. Here, we developed a new method to determine longitudinal untethered adult A. aegypti induced flight activity: the INduced FLight Activity TEst (INFLATE). This method was an adaptation of the "rapid iterative negative geotaxis" assay to assess locomotor activity in Drosophila and explore the spontaneous behavior of mosquitoes to fly following a physical stimulus. Insects were placed on a plastic cage previously divided in four vertical quadrants and flight performance was carried out by tapping cages towards the laboratory bench. After one minute, the number of insects per quadrant was registered by visual inspection and categorized in five different scores. By using INFLATE, we observed that flight performance was not influenced by repeated testing, sex or 5% ethanol intake. However, induced flight activity was strongly affected by aging, blood meal and inhibition of mitochondrial complex I. This simple and rapid method allows the longitudinal assessment of induced flight activity of multiple untethered mosquitoes and may contribute to a better understanding of A. aegypti dispersal biology.


Assuntos
Aedes/fisiologia , Voo Animal , Fisiologia/métodos , Distribuição Animal , Animais , Comportamento , Controle de Insetos/métodos , Mosquitos Vetores/fisiologia , Doenças Transmitidas por Vetores
15.
Nat Ecol Evol ; 4(9): 1174-1177, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661405

RESUMO

Vocalizations are of pivotal importance for many animals, yet sound propagation in air is severely limited. To expand their vocalization range, animals can produce high-intensity sounds, which can come at high energetic costs. High-intensity echolocation is thought to have evolved in bats because the costs of calling are reported to be negligible during flight. By comparing the metabolic rates of flying bats calling at varying intensities, we show that this is true only for low call intensities. Our results demonstrate that above 130 dB sound pressure level (SPL, at a reference distance of 10 cm), the costs of sound production become exorbitantly expensive for small bats, placing a limitation on the intensity at which they can call.


Assuntos
Quirópteros , Ecolocação , Animais , Voo Animal
16.
Artigo em Inglês | MEDLINE | ID: mdl-32468078

RESUMO

Honeybee pollen foragers departing the hive carry concentrated nectar to use as fuel for flight and glue for forming pollen loads. Since nectar is concentrated by in-hive bees at the cost of time and energy, using concentrated nectar increases the cost of foraging at the colony level. This experimental study explored the potential benefit to honeybees of using concentrated nectar for pollen collection by diluting nectar carried by pollen foragers from the hive. Mass feeding with 30% sugar solution successfully reduced the crop-load-sugar concentration in putative pollen foragers departing the hive, but while those bees tended to increase the crop-load volume, such increase did not fully compensate for the decreased amount of dissolved sugars in the crop load. Feeding 30% sugar solution reduced the pollen load dry weight by approx. 10-20% compared to the unfed control and to another test group fed 60% sugar solution. In addition, the pollen load size and sugar concentration of crop load remaining in returning pollen foragers was positively correlated. These results clearly show the advantage to honeybees of using concentrated nectar for pollen foraging.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Voo Animal/fisiologia , Néctar de Plantas/metabolismo , Pólen , Animais , Abelhas/metabolismo , Metabolismo Energético
17.
PLoS One ; 15(3): e0230262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176713

RESUMO

Although there is a consensus about the evolutionary drivers of animal migration, considerable work is necessary to identify the mechanisms that underlie the great variety of strategies observed in nature. The study of differential migration offers unique opportunities to identify such mechanisms and allows comparisons of the costs and benefits of migration. The purpose of this study was to compare the characteristics of short and long-distance migrations, and fitness consequences, in a long-lived seabird species. We combined demographic monitoring (survival, phenology, hatching success) of 58 Northern Gannets (Morus bassanus) breeding on Bonaventure Island (Canada) and biologging technology (Global Location Sensor or GLS loggers) to estimate activity and energy budgets during the non-breeding period for three different migration strategies: to the Gulf of Mexico (GM), southeast (SE) or northeast (NE) Atlantic coast of the U.S. Survival, timing of arrival at the colony and hatching success are similar for short (NE, SE) and long-distance (GM) migrants. Despite similar fitness consequences, we found, as expected, that the overall energetic cost of migration is higher for long-distance migrants, although the daily cost during migration was similar between strategies. In contrast, daily maintenance and thermoregulation costs were lower for GM migrants in winter, where sea-surface temperature of the GM is 4-7o C warmer than SE and NE. In addition, GM migrants tend to fly 30 min less per day in their wintering area than other migrants. Considering lower foraging effort and lower thermoregulation costs during winter for long-distance migrants, this suggests that the energetic benefits during the winter of foraging in the GM outweigh any negative consequences of the longer-distance migration. These results support the notion that the costs and benefits of short and long-distance migration is broadly equal on an annual basis, i.e. there are no apparent carry-over effects in this long-lived bird species, probably because of the favourable conditions in the furthest wintering area.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Metabolismo Energético/fisiologia , Animais , Cruzamento , Canadá , Voo Animal/fisiologia , Golfo do México , Oceanos e Mares , Estações do Ano , Análise de Sobrevida , Temperatura
18.
J Anim Ecol ; 89(5): 1254-1261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022903

RESUMO

Within-clade allometric relationships represent standard laws of scaling between energy and size, and their outliers provide new avenues for physiological and ecological research. According to the metabolic-level boundaries hypothesis, metabolic rates as a function of mass are expected to scale closer to 0.67 when driven by surface-related processes (e.g. heat or water flux), while volume-related processes (e.g. activity) generate slopes closer to one. In birds, daily energy expenditure (DEE) scales with body mass (M) in the relationship logDEE=2.35+0.68×logM , consistent with surface-level processes driving the relationship. However, taxon-specific patterns differ from the scaling slope of all birds. Hummingbirds have the highest mass-specific metabolic rates among all vertebrates. Previous studies on a few hummingbird species, without accounting for the phylogeny, estimated that the DEE-body mass relationship for hummingbirds was logDEE=1.72+1.21×logM . In Contrast to the theoretical expectations, this slope >1 indicates that larger hummingbirds are less metabolically efficient than smaller hummingbirds. We collected DEE and mass data for 12 hummingbird species, which, combined with published data, represented 17 hummingbird species in eight of nine hummingbird clades over a sixfold size range of body size (2.7-17.5 g). After accounting for phylogenetic relatedness, we found DEE scales with body mass as logDEE=2.04+0.95×logM . This slope of 0.95 is lower than previously estimated for hummingbirds, but much higher than the slope for all birds (0.68). The high slopes of torpor, hovering and flight potentially explain the high interspecific DEE slope for hummingbirds compared to other endotherms.


Assuntos
Metabolismo Energético , Voo Animal , Animais , Aves , Tamanho Corporal , Filogenia
19.
J Med Entomol ; 57(3): 824-829, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31808821

RESUMO

The Sterile Insect Technique (SIT) is a pest control method where large numbers of sterile males are released to induce sterility in wild populations. Since a successful SIT application depends on the released sterile males being competitive with wild males, standard quality control tests are a necessary component of any SIT program. Flight ability (ability to fly out from a device) is a reliable indicator of insect quality. Based on previous studies, we developed four new tubular devices constructed with locally available materials to explore their potential as flight test devices for Aedes aegypti (L.) mass-reared males. Males were allowed to fly upwards through a vertical tube, the ones that flew out were considered successful. The effect of male age (0 to 21 d old), test time interval (30 min to 24 h), and the design of the device (40 and 80 cm height and 2 and 3.5 cm diameter) were evaluated. Our devices determined differences in the flight ability of Ae. aegypti males of different ages. During the first minutes, more old males escaped than young males in three out of four types of devices. However, young males reached higher rates of escape in all cases after 24 h. For standard quality control tests, we recommend testing 2- to 3-d-old sexually mature males in the high and narrow device (80 × 2 cm). Further observations for time intervals between 1 and 5 h might be performed to decide the shortest and more representative interval to use.


Assuntos
Aedes/fisiologia , Voo Animal , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Comportamento Sexual Animal , Fatores Etários , Animais , Masculino , Controle de Mosquitos/instrumentação , Controle Biológico de Vetores/instrumentação , Reprodução
20.
Naturwissenschaften ; 106(7-8): 47, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309338

RESUMO

Birds which fly in coordinated cluster-flocks can benefit through the formation of group-level structures and patterns which can deter predators by visual confusion. Though unlike V-formation flight, cluster-flocking increases the energetic cost of flight, particularly in denser flocks. Cluster formations therefore provide a unique opportunity to investigate trade-offs between increased work rate (e.g. higher flap frequency) and other benefits of flocking. As part of a routine 9-km training flight release, a flock of six homing pigeons (Columba livia) with 5 Hz GPS and 200 Hz accelerometer biologgers attached flew an alternative trajectory totalling 177 km and 256 min of flight. We provide the first evidence that during a long-duration flight, pigeons' pairwise and group-level distances increased (i.e. group structure changed), while flap frequency decreased over time. This implies that as birds tire during long-duration flight, the ultimate functions of cluster-flocking-primarily anti-predator benefits-are overridden by the proximate costs of flying close to conspecifics.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Metabolismo Energético/fisiologia , Densidade Demográfica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA