Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1261, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737378

RESUMO

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Assuntos
Imageamento Tridimensional/métodos , Mamíferos , Planárias , Xenopus , Peixe-Zebra , Animais , Comportamento Animal , Mamíferos/fisiologia , Organoides/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Xenopus/anatomia & histologia , Xenopus/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
2.
Genes (Basel) ; 12(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440398

RESUMO

During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.


Assuntos
Replicação do DNA , Óvulo/metabolismo , Origem de Replicação , Pontos de Checagem da Fase S do Ciclo Celular , Animais , Cromatina/metabolismo , DNA/metabolismo , Masculino , Método de Monte Carlo , Espermatozoides/metabolismo , Xenopus
3.
J Biol Chem ; 295(26): 8759-8774, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32381507

RESUMO

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1-10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ß-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.


Assuntos
Receptores Frizzled/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Animais , Receptores Frizzled/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia Confocal/métodos , Mapas de Interação de Proteínas , Transporte Proteico , Proteína Wnt3A/análise , Xenopus
4.
Methods Mol Biol ; 1865: 83-90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151760

RESUMO

Due to its simple nature, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technique is massively used nowadays to modify genomic loci in a wide range of model systems. The possibility to interrogate gene function on a genome-wide scale is revolutionizing fundamental life sciences and will lead to new clinical breakthroughs. Its strength is even more pronounced when it is used in tandem with next-generation sequencing (NGS). The high throughput and low cost cause NGS to be the method of choice for exploring CRISPR-Cas9 experimental results. To analyze the NGS reads from genome editing experiments only few bioinformatics tools are available. BATCH-GE is a flexible and easy-to-use tool, which is especially useful for dealing with large amounts of data. It detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel.


Assuntos
Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Animais , Genoma , Xenopus/genética
5.
Dev Biol ; 426(2): 442-448, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27263125

RESUMO

Injection of human Chorionic Gonadotropin (hCG) directly into the dorsal lymph sac of Xenopus is a commonly used protocol for induction of ovulation, but recent shortages in the stocks of commercially available hCG as well as lack of a well tested alternative have resulted in frustrating experimental delays in laboratories that predominantly use Xenopus in their research. Mammalian Luteinizing Hormones (LH) share structural similarity, functional equivalency, and bind the same receptor as hCG; this suggests that LH may serve as a good alternative to hCG for promoting ovulation in Xenopus. LH has been found to induce maturation of Xenopus oocytes in vitro, but whether it can be used to induce ovulation in vivo has not been examined. Here we compared the ability of four mammalian LH proteins, bovine (bLH), human (hLH), ovine (oLH), porcine (pLH), to induce ovulation in Xenopus when injected into the dorsal lymph sac of sexually mature females. We find that both ovine and human LH, but not bovine or porcine, are good substitutes for hCG for induction of ovulation in WT and J strain Xenopus laevis and Xenopus tropicalis.


Assuntos
Gonadotropina Coriônica/farmacologia , Hormônio Luteinizante/farmacologia , Indução da Ovulação/métodos , Ovulação/efeitos dos fármacos , Xenopus laevis/fisiologia , Animais , Animais Endogâmicos , Bovinos , Feminino , Humanos , Indução da Ovulação/economia , Ovinos , Especificidade da Espécie , Suínos , Xenopus/fisiologia
6.
Proc Natl Acad Sci U S A ; 113(40): 11342-11347, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27638213

RESUMO

The ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals. For example, ground squirrels and camels can tolerate temperatures more than 40 °C better than many other mammalian species, yet a molecular mechanism subserving this ability is unclear. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal ion channel involved in the detection of noxious thermal and chemical stimuli by primary afferents of the somatosensory system. Here, we show that thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and Bactrian camels (Camelus ferus) express TRPV1 orthologs with dramatically reduced temperature sensitivity. The loss of sensitivity is restricted to temperature and does not affect capsaicin or acid responses, thereby maintaining a role for TRPV1 as a detector of noxious chemical cues. We show that heat sensitivity can be reengineered in both TRPV1 orthologs by a single amino acid substitution in the N-terminal ankyrin-repeat domain. Conversely, reciprocal mutations suppress heat sensitivity of rat TRPV1, supporting functional conservation of the residues. Our studies suggest that squirrels and camels co-opt a common molecular strategy to adapt to hot environments by suppressing the efficiency of TRPV1-mediated heat detection at the level of somatosensory neurons. Such adaptation is possible because of the remarkable functional flexibility of the TRPV1 molecule, which can undergo profound tuning at the minimal cost of a single amino acid change.


Assuntos
Camelus/fisiologia , Sciuridae/fisiologia , Canais de Cátion TRPV/metabolismo , Termotolerância , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Repetição de Anquirina , Capsaicina/farmacologia , Sequência Conservada , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Alinhamento de Sequência , Canais de Cátion TRPV/química , Termotolerância/efeitos dos fármacos , Xenopus/metabolismo
7.
Environ Pollut ; 210: 27-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701863

RESUMO

In recent years, phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental media and biota - and in humans - as the result of steady increase in global usage of PFRs. However, studies on the potential health and ecological risks of PFRs are still scarce. In this study, we investigated the thyroid hormone-disrupting activity and ecological risk of nine frequently detected PFRs by in vitro, in vivo and in silico approaches. Results from the dual-luciferase reporter gene assay showed that tributyl phosphate (TNBP), tricresyl phosphate (TMPP), tris(2-chloroisopropyl)phosphate (TCIPP) and tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCIPP) exerted thyroid receptor ß (TRß) antagonistic activity, with the values of RIC20 of 5.2 × 10(-7), 2.7 × 10(-7), 1.2 × 10(-6) and 6.8 × 10(-6) M, respectively. Molecular docking platform simulations suggested that the observed effects may be attributed to direct binding of PFRs to TR. Results from the T-screen assay indicated that TNBP and TMPP showed T3 antagonistic activity and thus significantly decreased the viability of GH3 cell lines in the presence of T3. The exposure assay using Xenopus tropicalis embryos revealed the potential teratogenic effect of TNBP, TMPP, TCIPP and TDCIPP. In conclusion, our studies revealed that some PFRs were potential thyroid hormone disruptors and may cause health and ecological risks. However, the mode of action of PFRs on TR remains uncertain. The correlation between the predicted affinity and the amplitude of the effect observed in cell based assay is encouraging, but not decisive. Further in vitro binding experiments of TR and PFRs are required. At the same time, the results provided here also demonstrated that multi-model approaches are of great importance to comprehensively evaluate the potential risks of emerging contaminants.


Assuntos
Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Receptores beta dos Hormônios Tireóideos/antagonistas & inibidores , Animais , Células CHO , Simulação por Computador , Cricetulus , Ecologia , Meio Ambiente , Retardadores de Chama/análise , Humanos , Simulação de Acoplamento Molecular , Organofosfatos/química , Ratos , Medição de Risco , Xenopus
8.
Nat Commun ; 6: 10173, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673941

RESUMO

High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K(+) currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na(+) and K(+) currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3-S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission.


Assuntos
Potenciais de Ação/genética , Oócitos/metabolismo , Potássio/metabolismo , Canais de Potássio Shaw/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cadeias de Markov , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios , Técnicas de Patch-Clamp , Canais de Potássio Shaw/metabolismo , Xenopus
9.
Sci Rep ; 5: 18404, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26678093

RESUMO

Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward rectification, we studied a mutant Kir channel (E224K/H226E) and measured single-channel currents and streaming potentials (Vstream), the latter provide the ratio of water to ions queued in a single-file permeation process in the selectivity filter. The water-ion coupling ratio was near one at a high K(+) concentration ([K(+)]) for the wild-type channel and increased substantially as [K(+)] decreased. On the other hand, fewer ions occupied the selectivity filter in the mutant at all [K(+)]. A model for the Kir channel involving a K(+) binding site in the wide pore was introduced. Model analyses revealed that the rate constants associated with the binding and release to and from the wide-pore K(+) binding site was modified in the mutant. These effects lead to the reduced contribution of a conventional two-ion permeation mode to total conductance, especially at positive potentials, thereby inward rectification.


Assuntos
Citoplasma/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular , Citoplasma/química , Íons/química , Íons/metabolismo , Cadeias de Markov , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
10.
PLoS One ; 10(9): e0137357, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348728

RESUMO

Amyloid beta (Aß) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aß pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aß pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aß pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aß pores and show that the extent and spatial range of such up-regulation increases as Aß pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Permeabilidade da Membrana Celular , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Cálcio/química , Membrana Celular/metabolismo , Membrana Celular/patologia , Sobrevivência Celular , Humanos , Cinética , Cadeias de Markov , Potencial da Membrana Mitocondrial , Oócitos/química , Oócitos/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Agregação Patológica de Proteínas/metabolismo , Xenopus
11.
Biophys J ; 108(3): 540-56, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650922

RESUMO

The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.


Assuntos
Teorema de Bayes , Estatísticas não Paramétricas , Animais , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cadeias de Markov , Modelos Teóricos , Método de Monte Carlo , Fatores de Tempo , Xenopus
12.
Bioorg Med Chem Lett ; 25(2): 400-3, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25510374

RESUMO

We present the synthesis of new derivatives of natural products magnolol (1) and honokiol (2) and their evaluation as allosteric ligands for modulation of GABAA receptor activity. New derivatives were prepared via metal assisted cross-coupling reactions in two consecutive steps. Compounds were tested by means of two-electrode voltage clamp electrophysiology at the α1ß2γ2 receptor subtype at low GABA concentrations. We have identified several compounds enhancing GABA induced current (IGABA) in the range similar or even higher than the lead structures. At 3µM, compound 8g enhanced IGABA by factor of 443, compared to 162 and 338 of honokiol and magnolol, respectively. Furthermore, 8g at EC10-20 features a much bigger window of separation between the α1ß2γ2 and the α1ß1γ2 subtypes compared to honokiol, and thus improved subtype selectivity.


Assuntos
Compostos de Bifenilo/química , Moduladores GABAérgicos/química , Moduladores GABAérgicos/metabolismo , Lignanas/química , Metais/farmacologia , Oócitos/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Estrutura Molecular , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
13.
Environ Toxicol ; 30(9): 1091-101, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24616035

RESUMO

The toxic effects of Gusathion (GUS), which is a commercial organophosphate (OP) pesticide, and also its active ingredient, azinphos methyl (AzM), are evaluated comparatively with in vitro and in vivo studies. Initially, the 96-h LC50 values of AzM and GUS were estimated for two different life stages of Xenopus laevis, embryos, and tadpoles. The actual AzM concentrations in exposure media were monitored by high-performance liquid chromatography. Also, the sub-lethal effects of these compounds to tadpoles were determined 24 h later at exposure concentrations of 0.1 and 1 mg/L using selected biomarker enzymes such as acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase. Differences in AChE inhibition capacities of AzM and GUS were evaluated under in vitro conditions between frogs and fish in the second part of this study. The AChE activities in a pure electrical eel AChE solution and in brain homogenates of adult Cyprinus carpio, Pelophylax ridibundus, and X. laevis were assayed after in vitro exposure to 0.05, 0.5, 5, and 50 mg/L concentrations of AzM and GUS. According to in vivo studies AChE, CaE and GST are important biomarkers of the effect of OP exposure while CaE may be more effective in short-term, low-concentration exposures. The results of in vitro studies showed that amphibian brain AChEs were relatively more resistant to OP exposure than fish AChEs. The resistance may be the cause of the lower toxicity/lethality of OP compounds to amphibians than to fish.


Assuntos
Azinfos-Metil/toxicidade , Encéfalo/efeitos dos fármacos , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Carboxilesterase/metabolismo , Carpas/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Glutationa Transferase/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Ranidae/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
14.
J Gen Physiol ; 143(4): 499-512, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24638994

RESUMO

Voltage-gated K(+) channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K(+) selective conductance. In some K(+) channels, the selectivity filter can undergo a conformational change to reduce K(+) flux by a mechanism called C-type inactivation. In human ether-a-go-go-related gene 1 (hERG1) K(+) channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/fisiologia , Cadeias de Markov , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Benzamidas/farmacologia , Sítios de Ligação/fisiologia , Humanos , Estereoisomerismo , Xenopus
15.
BMC Syst Biol ; 8: 3, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24397936

RESUMO

BACKGROUND: During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. RESULTS: We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. CONCLUSION: The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to elucidate the regulatory circuits controlling the spatial-temporal dynamics in embryonic development.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Xenopus/embriologia , Xenopus/genética , Algoritmos , Animais , Cadeias de Markov
16.
Ecotoxicology ; 23(1): 102-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24282072

RESUMO

The introduction of chemical products into the environment can cause long-term effects on the ecosystems. Increasing efforts are being made to determine the extent of contamination in particularly affected areas using diverse methods to assess the ecotoxicological impact. We used a modified Frog Embrio Toxicity Assay-Xenopus method to determine the extent of toxicological load in different sample soils obtained near three municipal solid waste landfills in Catalonia (Spain). The results show that the Garraf landfill facility produces more embryotoxic damage to the surroundings, than the others ones: Can Mata landfill and Montferrer-Castellbó landfill. The aim of this work is to demonstrate how different management of complex sources of contamination as the controlled dumping sites can modulate the presence of toxics in the environment and their effects and through this, help determine the safer way to treat these wastes. To this effect some conceptual modifications have been made on the established American Society for Testing and Materials protocol. The validity of the new model, both as to model of calculation as to protocol, has been demonstrated in three different sites with complex sources of contamination.


Assuntos
Poluentes Ambientais/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Instalações de Eliminação de Resíduos , Xenopus/metabolismo , Animais , Solo/química , Espanha , Testes de Toxicidade/economia
17.
PLoS One ; 7(4): e35208, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536358

RESUMO

Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level.


Assuntos
Algoritmos , Simulação por Computador , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Modelos Moleculares , Regulação Alostérica , Animais , Cinética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Cadeias de Markov , Potenciais da Membrana , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus
18.
J Gen Physiol ; 138(5): 475-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22006989

RESUMO

The recently published crystal structure of the Cx26 gap junction channel provides a unique opportunity for elucidation of the structure of the conductive connexin pore and the molecular determinants of its ion permeation properties (conductance, current-voltage [I-V] relations, and charge selectivity). However, the crystal structure was incomplete, most notably lacking the coordinates of the N-terminal methionine residue, which resides within the pore, and also lacking two cytosolic domains. To allow computational studies for comparison with the known channel properties, we completed the structure. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) simulations of the completed and the published Cx26 hemichannel crystal structure indicate that the pore is too narrow to permit significant ion flux. The GCMC/BD simulations predict marked inward current rectification and almost perfect anion selectivity, both inconsistent with known channel properties. The completed structure was refined by all-atom molecular dynamics (MD) simulations (220 ns total) in an explicit solvent and POPC membrane system. These MD simulations produced an equilibrated structure with a larger minimal pore diameter, which decreased the height of the permeation barrier formed by the N terminus. GCMC/BD simulations of the MD-equilibrated structure yielded more appropriate single-channel conductance and less anion/cation selectivity. However, the simulations much more closely matched experimentally determined I-V relations when the charge effects of specific co- and posttranslational modifications of Cx26 previously identified by mass spectrometry were incorporated. We conclude that the average equilibrated structure obtained after MD simulations more closely represents the open Cx26 hemichannel structure than does the crystal structure, and that co- and posttranslational modifications of Cx26 hemichannels are likely to play an important physiological role by defining the conductance and ion selectivity of Cx26 channels. Furthermore, the simulations and data suggest that experimentally observed heterogeneity in Cx26 I-V relations can be accounted for by variation in co- and posttranslational modifications.


Assuntos
Conexinas/química , Simulação de Dinâmica Molecular , Animais , Conexina 26 , Cristalização , Regulação da Expressão Gênica/fisiologia , Humanos , Modelos Moleculares , Método de Monte Carlo , Oócitos/metabolismo , Conformação Proteica , Xenopus
19.
Phys Chem Chem Phys ; 13(24): 11694-701, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21597615

RESUMO

In this paper we have investigated the behaviour of newly synthesised mono-palmitoyl- and dipalmitoyl-phosphatidylethanolamine probes (abbreviated as mPE and dPE, respectively) labelled in the polar headgroup region by either the FL-BODIPY or the 564/570-BODIPY fluorophore and solubilised in lipid systems that exhibit different curvatures. Because of the bulky BODIPY-groups, the monoacyl-form derivatives have a conic-like shape, whereas that for the diacyl derivatives is rather cylindrical. A careful analysis of time-resolved resonance energy transfer experiments by means of analytical models as well as Monte Carlo simulations shows that the mPE derivatives have a comparable affinity to highly curved bilayer regions (torroidal pores formed by magainin-2 in lipid bilayers, or the rims of discoid bicelles) and to planar bilayer regions (i.e. the flat region of lipid bilayers and bicelles). Furthermore, the monoacyl-probes are as compared to the diacyl-probes effectively closer to each other in a lipid bilayer, while none of these probes seems to be randomly distributed. Self-aggregation is most efficiently induced by the larger aromatic 564/570-BODIPY chromophore, but it is suppressed when using the diacyl instead of the monoacyl-form, and/or by attaching BODIPY-groups to the acyl-chain.


Assuntos
Compostos de Boro/química , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Animais , Transferência de Energia , Magaininas/química , Método de Monte Carlo , Fosfatidilcolinas/química , Espectrometria de Fluorescência , Xenopus/metabolismo , Proteínas de Xenopus/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-20820785

RESUMO

Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage-gated sodium channels (NaV). TTX binding physically blocks the flow of sodium ions through NaV, thereby preventing action potential generation and propagation. TTX has different binding affinities for different NaV isoforms. These differences are imparted by amino acid substitutions in positions within, or proximal to, the TTX-binding site in the channel pore. These substitutions confer TTX-resistance to a variety of species. The garter snake Thamnophis sirtalis has evolved TTX-resistance over the course of an arms race, allowing some populations of snakes to feed on tetrodotoxic newts, including Taricha granulosa. Different populations of the garter snake have different degrees of TTX-resistance, which is closely related to the number of amino acid substitutions. We tested the biophysical properties and ion selectivity of NaV of three garter snake populations from Bear Lake, Idaho; Warrenton, Oregon; and Willow Creek, California. We observed changes in gating properties of TTX-resistant (TTXr) NaV. In addition, ion selectivity of TTXr NaV was significantly different from that of TTX-sensitive NaV. These results suggest TTX-resistance comes at a cost to performance caused by changes in the biophysical properties and ion selectivity of TTXr NaV.


Assuntos
Fenômenos Biofísicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas Musculares/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Fenômenos Biofísicos/genética , Biofísica/métodos , Colubridae/metabolismo , Estimulação Elétrica/métodos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Microinjeções/métodos , Proteínas Musculares/genética , Canal de Sódio Disparado por Voltagem NAV1.4 , Oocistos , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/genética , Tetrodotoxina/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA