Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(7): 2106-2120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587130

RESUMO

Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.


Assuntos
Halomonas , Engenharia Metabólica , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Engenharia Metabólica/métodos , Halomonas/metabolismo , Halomonas/genética , Xilose/metabolismo , Fermentação , Reatores Biológicos/microbiologia
2.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38268490

RESUMO

Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Etanol/metabolismo
3.
Bioprocess Biosyst Eng ; 45(6): 1019-1031, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355104

RESUMO

Xylitol is a well-known sugar alcohol with exponentially rising market demand due to its diverse industrial applications. Organic agro-industrial residues (OAIR) are economic alternative for the cost-effective production of commodity products along with addressing environmental pollution. The present study aimed to design a process for xylitol production from OAIR via microbial fermentation with Pseudomonas gessardii VXlt-16. Parametric analysis with Taguchi orthogonal array approach resulted in a conversion factor of 0.64 g xylitol/g xylose available in untreated sugarcane bagasse hydrolysate (SBH). At bench scale, the product yield increased to 71.98/100 g (0.66 g/L h). 48.49 g of xylitol crystals of high purity (94.56%) were recovered after detoxification with 2% activated carbon. Cost analysis identified downstream operations as one of the cost-intensive parts that can be countered by adsorbent recycling. Spent carbon, regenerated with acetic acid washing can be reused for six cycles effectively and reduced downstream cost by about ≈32%. The strategy would become useful in the cost-effective production of several biomass-dependent products like proteins, enzymes, organic acids, as well.


Assuntos
Saccharum , Xilitol , Celulose/química , Custos e Análise de Custo , Fermentação , Hidrólise , Pseudomonas , Saccharum/metabolismo , Xilose/metabolismo
4.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936000

RESUMO

Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.


Assuntos
Celulase/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Trichoderma/enzimologia , Biocombustíveis/microbiologia , Fermentação , Glucose/metabolismo , Hidrólise , Trichoderma/metabolismo , Xilose/metabolismo , Zea mays/metabolismo
5.
PLoS Comput Biol ; 15(8): e1007242, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430276

RESUMO

A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biological levels and origins into models. In this study, we use the recently proposed computational approach iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling methods and machine learning techniques, in the context of Bayesian inference. Monte Carlo parameter sampling methods allow us to exploit synergies between different data sources and generate a population of kinetic models that are consistent with the available data and physicochemical laws. The machine learning allows us to data-mine the a priori generated kinetic parameters together with the integrated datasets and derive posterior distributions of kinetic parameters consistent with the observed physiology. In this work, we used iSCHRUNK to address a design question: can we identify which are the kinetic parameters and what are their values that give rise to a desired metabolic behavior? Such information is important for a wide variety of studies ranging from biotechnology to medicine. To illustrate the proposed methodology, we performed Metabolic Control Analysis, computed the flux control coefficients of the xylose uptake (XTR), and identified parameters that ensure a rate improvement of XTR in a glucose-xylose co-utilizing S. cerevisiae strain. Our results indicate that only three kinetic parameters need to be accurately characterized to describe the studied physiology, and ultimately to design and control the desired responses of the metabolism. This framework paves the way for a new generation of methods that will systematically integrate the wealth of available omics data and efficiently extract the information necessary for metabolic engineering and synthetic biology decisions.


Assuntos
Modelos Biológicos , Algoritmos , Teorema de Bayes , Fenômenos Bioquímicos , Biologia Computacional , Hexoquinase/metabolismo , Cinética , Aprendizado de Máquina , Engenharia Metabólica , Redes e Vias Metabólicas , Método de Monte Carlo , Saccharomyces cerevisiae/metabolismo , Incerteza , Xilose/metabolismo
6.
Appl Microbiol Biotechnol ; 103(13): 5143-5160, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31101942

RESUMO

Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.


Assuntos
Microbiologia Industrial/economia , Engenharia Metabólica/economia , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Biologia Sintética/economia , Xilitol/biossíntese , Fermentação , Glucose/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Álcoois Açúcares/metabolismo , Biologia Sintética/métodos , Biologia Sintética/tendências , Xilose/metabolismo
7.
Curr Opin Biotechnol ; 57: 56-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785001

RESUMO

Energy security, environmental pollution, and economic development drive the development of alternatives to fossil fuels as an urgent global priority. Lignocellulosic biomass has the potential to contribute to meeting the demand for biofuel production via hydrolysis and fermentation of released sugars, such as glucose, xylose, and arabinose. Construction of robust cell factories requires introducing and rewiring of their metabolism to efficiently use all these sugars. Here, we review recent advances in re-constructing pathways for metabolism of pentoses, with special focus on xylose metabolism in the most widely used cell factories Saccharomyces cerevisiae and Escherichia coli. We also highlight engineering advanced biofuels-synthesis pathways and describes progress toward overcoming the challenges facing adoption of large-scale biofuel production.


Assuntos
Biocombustíveis , Xilose/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Hidrólise , Redes e Vias Metabólicas , Xilose/química
8.
Bioresour Technol ; 273: 86-92, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30415073

RESUMO

In this work, d-lactic acid production was evaluated from a simulated hydrolysate of corn stover (32 g/L xylose, 42 g/L glucose) with the metabolically engineered Escherichia coli strain JU15. Based on the experimental results, a technical and economic analysis of the entire process was performed using the Aspen Plus software. As a result, it was possible to show that the strain can efficiently produce lactic acid from both sugars, reaching a final concentration of 40 g/L and a yield of 0.6 g lactic acid/g sugars. The process is economically viable at higher scales of 1000 tons/day. The cost distribution is influenced by the scale of the process; on a larger scale, the cost of raw materials represents a higher percentage of total cost than it does on smaller scales. The use of a metabolically engineered strain allows a better use of the sugars obtained from agroindustrial residues.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Ácido Láctico/biossíntese , Xilose/metabolismo , Zea mays/metabolismo , Engenharia Metabólica
9.
Bioengineered ; 9(1): 209-213, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29685061

RESUMO

Poly-(3-hydroxybutyrate) (P3HB) is a polyester with biodegradable and biocompatible characteristics suitable for bio-plastics and bio-medical use. In order to reduce the raw material cost, cheaper carbon sources such as xylose and glycerol were evaluated for P3HB production. We first conducted genome-scale metabolic network analysis to find the optimal pathways for P3HB production using xylose or glycerol respectively as the sole carbon sources. The results indicated that the non-oxidative glycolysis (NOG) pathway is important to improve the product yields. We then engineered this pathway into E. coli by introducing foreign phophoketolase enzymes. The results showed that the carbon yield improved from 0.19 to 0.24 for xylose and from 0.30 to 0.43 for glycerol. This further proved that the introduction of NOG pathway can be used as a general strategy to improve P3HB production.


Assuntos
Carbono/metabolismo , Escherichia coli/enzimologia , Glicerol/metabolismo , Glicólise/genética , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Xilose/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Carbono/economia , Escherichia coli/genética , Fermentação , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Expressão Gênica , Glicerol/economia , Cinética , Engenharia Metabólica/economia , Engenharia Metabólica/métodos , Transgenes , Xilose/economia
10.
Microb Cell Fact ; 16(1): 153, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903764

RESUMO

BACKGROUND: Understanding the effects of oxygen levels on yeast xylose metabolism would benefit ethanol production. In this work, xylose fermentative capacity of Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae and Candida tenuis was systematically compared under aerobic, oxygen-limited and anaerobic conditions. RESULTS: Fermentative performances of the four yeasts were greatly influenced by oxygen availability. S. stipitis and S. passalidarum showed the highest ethanol yields (above 0.44 g g-1) under oxygen limitation. However, S. passalidarum produced 1.5 times more ethanol than S. stipitis under anaerobiosis. While C. tenuis showed the lowest xylose consumption rate and incapacity to produce ethanol, S. arborariae showed an intermediate fermentative performance among the yeasts. NAD(P)H xylose reductase (XR) activity in crude cell extracts correlated with xylose consumption rates and ethanol production. CONCLUSIONS: Overall, the present work demonstrates that the availability of oxygen influences the production of ethanol by yeasts and indicates that the NADH-dependent XR activity is a limiting step on the xylose metabolism. S. stipitis and S. passalidarum have the greatest potential for ethanol production from xylose. Both yeasts showed similar ethanol yields near theoretical under oxygen-limited condition. Besides that, S. passalidarum showed the best xylose consumption and ethanol production under anaerobiosis.


Assuntos
Fermentação , Oxigênio/análise , Saccharomycetales/metabolismo , Xilose/metabolismo , Aldeído Redutase/metabolismo , Anaerobiose , Etanol/metabolismo , Oxigênio/metabolismo , Saccharomycetales/enzimologia
11.
J Ind Microbiol Biotechnol ; 44(9): 1261-1272, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28536841

RESUMO

The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.


Assuntos
Técnicas de Cultura Celular por Lotes , Separação Celular , Etanol/metabolismo , Fermentação , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo , Biomassa , Contagem de Células , Etanol/economia , Etanol/provisão & distribuição , Xilose/metabolismo
12.
J Basic Microbiol ; 57(4): 345-352, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28155998

RESUMO

This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L-1 ) was able to give the SCO yield of 0.17 g g-1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources.


Assuntos
Biocombustíveis/análise , Lipídeos/análise , Lipídeos/química , Rhodotorula/química , Rhodotorula/metabolismo , Biocombustíveis/economia , Biomassa , Celulose/metabolismo , Esterificação , Ácidos Graxos/análise , Lipídeos/isolamento & purificação , Solventes/química , Xilose/metabolismo
13.
J Ind Microbiol Biotechnol ; 44(3): 453-464, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28101807

RESUMO

To achieve a cost-effective bioconversion of lignocellulosic materials, a novel xylose/glucose co-fermentation process by co-culture of cellulose-utilizing recombinant Saccharomyces cerevisiae (S. cerevisiae) and xylan-utilizing recombinant Pichia pastoris (P. pastoris) was developed, in which ethanol was produced directly from wheat straw without additional hydrolytic enzymes. Recombinant S. cerevisiae coexpressing three types of cellulase and recombinant P. pastoris coexpressing two types of xylanase were constructed, respectively. All cellulases and xylanases were successfully expressed and similar extracellular activity was demonstrated. The maximum ethanol concentration of 32.6 g L-1 with the yield 0.42 g g-1 was achieved from wheat straw corresponding to 100 g L-1 of total sugar after 80 h co-fermentation, which corresponds to 82.6% of the theoretical yield. These results demonstrate that the direct and efficient ethanol production from lignocellulosic materials is accomplished by simultaneous saccharification (cellulose and hemicellulose) and co-fermentation (glucose and xylose) with the co-culture of the two recombinant yeasts.


Assuntos
Etanol/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Triticum , Celulose/química , Técnicas de Cocultura , Análise Custo-Benefício , Fermentação , Glucose/metabolismo , Lignina/química , Microrganismos Geneticamente Modificados , Polissacarídeos/química , Engenharia de Proteínas , Xilose/metabolismo
14.
Biotechnol Bioeng ; 114(5): 980-989, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27888662

RESUMO

High solids loadings (>18 wt%) in enzymatic hydrolysis and fermentation are desired for lignocellulosic biofuel production at a high titer and low cost. However, sugar conversion and ethanol yield decrease with increasing solids loading. The factor(s) limiting sugar conversion at high solids loading is not clearly understood. In the present study, we investigated the effect of solids loading on simultaneous saccharification and co-fermentation (SSCF) of AFEX™ (ammonia fiber expansion) pretreated corn stover for ethanol production using a xylose fermenting strain Saccharomyces cerevisiae 424A(LNH-ST). Decreased sugar conversion and ethanol yield with increasing solids loading were also observed. End-product (ethanol) was proven to be the major cause of this issue and increased degradation products with increasing solids loading was also a cause. For the first time, we show that with in situ removal of end-product by performing SSCF aerobically, sugar conversion stopped decreasing with increasing solids loading and monomeric sugar conversion reached as high as 93% at a high solids loading of 24.9 wt%. Techno-economic analysis was employed to explore the economic possibilities of cellulosic ethanol production at high solids loadings. The results suggest that low-cost in situ removal of ethanol during SSCF would significantly improve the economics of high solids loading processes. Biotechnol. Bioeng. 2017;114: 980-989. © 2016 Wiley Periodicals, Inc.


Assuntos
Biocombustíveis , Reatores Biológicos , Etanol/metabolismo , Lignina/metabolismo , Amônia/metabolismo , Biocombustíveis/análise , Biocombustíveis/economia , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Etanol/análise , Fermentação , Glucose/metabolismo , Hidrólise , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Zea mays/química
15.
Bioresour Technol ; 222: 431-438, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27750196

RESUMO

The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous ß-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol.


Assuntos
Bacillus coagulans/metabolismo , Biotecnologia/economia , Biotecnologia/métodos , Celulose/metabolismo , Ácido Láctico/biossíntese , Celobiose/metabolismo , Celulase/economia , Celulase/metabolismo , Celulose/química , Análise Custo-Benefício , Fermentação , Hidrólise , Ácido Láctico/metabolismo , Lignina/química , Lignina/metabolismo , Sulfitos/química , Sulfitos/metabolismo , Xilose/metabolismo , beta-Glucosidase/metabolismo
16.
Bioresour Technol ; 219: 123-131, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27484668

RESUMO

High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals.


Assuntos
Fermentação , Gluconatos/metabolismo , Gluconobacter oxydans/metabolismo , Lignina/metabolismo , Ácido Oxâmico/análogos & derivados , Biomassa , Custos e Análise de Custo , Glucose/metabolismo , Lignina/química , Ácido Oxâmico/metabolismo , Ácidos Sulfúricos/química , Xilose/metabolismo , Zea mays
17.
Bioresour Technol ; 213: 299-310, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27142629

RESUMO

Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol.


Assuntos
Biotecnologia/métodos , Lignina/metabolismo , Xilitol/biossíntese , Biomassa , Biotecnologia/economia , Celulose/metabolismo , Fontes Geradoras de Energia , Fermentação , Engenharia Genética , Hidrólise , Polissacarídeos , Xilose/química , Xilose/metabolismo
18.
Bioresour Technol ; 208: 100-109, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26926202

RESUMO

This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Papel , Esgotos , Meio Ambiente , Fermentação , Glucose/metabolismo , Hidrólise , Resíduos Industriais , Xilose/metabolismo
19.
Bioresour Technol ; 207: 157-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26881333

RESUMO

This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining. After refining, poplar pretreated at 205°C for 10min without SO2 obtained a 32% improvement in enzymatic hydrolysis and achieved similar overall monomeric sugar recovery (539kg/tonne) to samples pretreated with SO2. Refining did not improve hydrolyzability of samples pretreated at more severe conditions, nor did it improve the overall sugar recovery. By maximizing overall sugar recovery, refining could partially decouple the pretreatment from other unit operations, and enable the use of low temperature, non-sulfur pretreatment conditions. The study demonstrates the possibility of using post-treatment refining to accommodate potential pretreatment process upsets without sacrificing sugar yields.


Assuntos
Biotecnologia/métodos , Carboidratos/isolamento & purificação , Hibridização Genética , Populus/química , Populus/genética , Vapor , Biomassa , Biotecnologia/economia , Celulose/metabolismo , Glucose/metabolismo , Hidrólise , Tamanho da Partícula , Solubilidade , Xilose/metabolismo
20.
J Biosci Bioeng ; 121(1): 66-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26149719

RESUMO

Lignocellulosic biomass and dedicated energy crops such as Jerusalem artichoke are promising alternatives for biobutanol production by solventogenic clostridia. However, fermentable sugars such as fructose or xylose released from the hydrolysis of these feedstocks were subjected to the incomplete utilization by the strains, leading to relatively low butanol production and productivity. When 0.001 g/L ZnSO4·7H2O was supplemented into the medium containing fructose as sole carbon source, 12.8 g/L of butanol was achieved with butanol productivity of 0.089 g/L/h compared to only 4.5 g/L of butanol produced with butanol productivity of 0.028 g/L/h in the control without zinc supplementation. Micronutrient zinc also led to the improved butanol production up to 8.3 g/L derived from 45.2 g/L xylose as sole carbon source with increasing butanol productivity by 31.7%. Moreover, the decreased acids production was observed under the zinc supplementation condition, resulting in the increased butanol yields of 0.202 g/g-fructose and 0.184 g/g-xylose, respectively. Similar improvements were also observed with increasing butanol production by 130.2 % and 8.5 %, butanol productivity by 203.4% and 18.4%, respectively, in acetone-butanol-ethanol fermentations from sugar mixtures of fructose/glucose (4:1) and xylose/glucose (1:2) simulating the hydrolysates of Jerusalem artichoke tubers and corn stover. The results obtained from transcriptional analysis revealed that zinc may have regulatory mechanisms for the sugar transport and metabolism of Clostridium acetobutylicum L7. Therefore, micronutrient zinc supplementation could be an effective way for economic development of butanol production derived from these low-cost agricultural feedstocks.


Assuntos
1-Butanol/metabolismo , Acetona/metabolismo , Etanol/metabolismo , Fermentação , Frutose/metabolismo , Xilose/metabolismo , Zinco/metabolismo , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/metabolismo , Fermentação/efeitos dos fármacos , Glucose/metabolismo , Helianthus/química , Helianthus/metabolismo , Zea mays/química , Zea mays/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA