Your browser doesn't support javascript.
loading
Delay-dependent stability analysis for continuous-time BAM neural networks with Markovian jumping parameters.
Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting.
Afiliação
  • Liu H; Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China. hongyangliu1987@gmail.com
Neural Netw ; 23(3): 315-21, 2010 Apr.
Article em En | MEDLINE | ID: mdl-20022463
This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.
Assuntos

Texto completo: 1 Temas: ECOS / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Cadeias de Markov / Redes Neurais de Computação Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Temas: ECOS / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Cadeias de Markov / Redes Neurais de Computação Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: China