Assessment of change in biofilm architecture by nutrient concentration using a multichannel microdevice flow system.
J Biosci Bioeng
; 115(3): 326-31, 2013 Mar.
Article
em En
| MEDLINE
| ID: mdl-23085416
A new multichannel microdevice flow system with stainless steel flow chamber was used for architecture visualization, development monitoring and structural quantification of GFP-labeled Pseudomonas aeruginosa PAO1 live biofilms. Direct in situ investigations using confocal laser scanning microscopy (CLSM) at 72 h revealed structural pattern differences as a result of nutrient concentration gradients. When grown in LB medium, round, dispersed cellular aggregates were formed whereas in 1/3-diluted LB medium, biofilms were mostly flat and compact. However, COMSTAT analyses showed no considerable differences in biomass and thickness between the two LB concentrations. Characterization of time-dependent development of biofilms grown in 1/3-diluted LB medium showed full maturation of colonies by 120 h reaching maximum biomass at 17.1 µm(3)/µm(2) and average thickness at 44.4 µm. Consequent thinning and formation of openings through interior in colonies occurred by 168 h. These results suggest that the new system tested allowed a fast and thick biofilm development on the surface of the stainless steel flow chamber. These findings may provide better estimates of biofilm activity and systematic evaluation of the effects of different parameters on biofilm morphology and development in industrial and biomedical systems.
Texto completo:
1
Temas:
ECOS
/
Aspectos_gerais
Bases de dados:
MEDLINE
Assunto principal:
Biofilmes
/
Técnicas Analíticas Microfluídicas
Idioma:
En
Revista:
J Biosci Bioeng
Assunto da revista:
ENGENHARIA BIOMEDICA
/
MICROBIOLOGIA
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Japão