Your browser doesn't support javascript.
loading
Joint modeling approach for semicompeting risks data with missing nonterminal event status.
Hu, Chen; Tsodikov, Alex.
Afiliação
  • Hu C; Radiation Therapy Oncology Group (RTOG) Statistical Center, 1818 Market Street, Suite 1600, Philadelphia, PA , 19103, USA, chu@acr.org.
Lifetime Data Anal ; 20(4): 563-83, 2014 Oct.
Article em En | MEDLINE | ID: mdl-24430204
Semicompeting risks data, where a subject may experience sequential non-terminal and terminal events, and the terminal event may censor the non-terminal event but not vice versa, are widely available in many biomedical studies. We consider the situation when a proportion of subjects' non-terminal events is missing, such that the observed data become a mixture of "true" semicompeting risks data and partially observed terminal event only data. An illness-death multistate model with proportional hazards assumptions is proposed to study the relationship between non-terminal and terminal events, and provide covariate-specific global and local association measures. Maximum likelihood estimation based on semiparametric regression analysis is used for statistical inference, and asymptotic properties of proposed estimators are studied using empirical process and martingale arguments. We illustrate the proposed method with simulation studies and data analysis of a follicular cell lymphoma study.
Assuntos

Texto completo: 1 Temas: ECOS / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Risco / Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Etiology_studies / Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Temas: ECOS / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Risco / Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Etiology_studies / Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2014 Tipo de documento: Article