Your browser doesn't support javascript.
loading
A Forecasting Model for Feed Grain Demand Based on Combined Dynamic Model.
Yang, Tiejun; Yang, Na; Zhu, Chunhua.
Afiliação
  • Yang T; School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
  • Yang N; School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
  • Zhu C; School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
Comput Intell Neurosci ; 2016: 5329870, 2016.
Article em En | MEDLINE | ID: mdl-27698661
In order to improve the long-term prediction accuracy of feed grain demand, a dynamic forecast model of long-term feed grain demand is realized with joint multivariate regression model, of which the correlation between the feed grain demand and its influence factors is analyzed firstly; then the change trend of various factors that affect the feed grain demand is predicted by using ARIMA model. The simulation results show that the accuracy of proposed combined dynamic forecasting model is obviously higher than that of the grey system model. Thus, it indicates that the proposed algorithm is effective.
Assuntos

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Grão Comestível / Dinâmica não Linear / Previsões / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Grão Comestível / Dinâmica não Linear / Previsões / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China