Your browser doesn't support javascript.
loading
Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells.
Tian, Zheng-Wei; Xu, Dan-Hua; Wang, Tian-Yun; Wang, Xiao-Yin; Xu, Hong-Yan; Zhao, Chun-Peng; Xu, Guang-Hua.
Afiliação
  • Tian ZW; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Xu DH; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Wang TY; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Wang XY; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Xu HY; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Zhao CP; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
  • Xu GH; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.
J Cell Mol Med ; 22(2): 1095-1102, 2018 02.
Article em En | MEDLINE | ID: mdl-29077269
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Assuntos
Palavras-chave

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Transfecção / Genoma Humano / Regiões de Interação com a Matriz Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Transfecção / Genoma Humano / Regiões de Interação com a Matriz Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China