An efficient Bayesian kinetic lumping algorithm to identify metastable conformational states via Gibbs sampling.
J Chem Phys
; 149(7): 072337, 2018 Aug 21.
Article
em En
| MEDLINE
| ID: mdl-30134698
Markov State Model (MSM) has become a popular approach to study the conformational dynamics of complex biological systems in recent years. Built upon a large number of short molecular dynamics simulation trajectories, MSM is able to predict the long time scale dynamics of complex systems. However, to achieve Markovianity, an MSM often contains hundreds or thousands of states (microstates), hindering human interpretation of the underlying system mechanism. One way to reduce the number of states is to lump kinetically similar states together and thus coarse-grain the microstates into macrostates. In this work, we introduce a probabilistic lumping algorithm, the Gibbs lumping algorithm, to assign a probability to any given kinetic lumping using the Bayesian inference. In our algorithm, the transitions among kinetically distinct macrostates are modeled by Poisson processes, which will well reflect the separation of time scales in the underlying free energy landscape of biomolecules. Furthermore, to facilitate the search for the optimal kinetic lumping (i.e., the lumped model with the highest probability), a Gibbs sampling algorithm is introduced. To demonstrate the power of our new method, we apply it to three systems: a 2D potential, alanine dipeptide, and a WW protein domain. In comparison with six other popular lumping algorithms, we show that our method can persistently produce the lumped macrostate model with the highest probability as well as the largest metastability. We anticipate that our Gibbs lumping algorithm holds great promise to be widely applied to investigate conformational changes in biological macromolecules.
Texto completo:
1
Temas:
ECOS
/
Financiamentos_gastos
Bases de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Proteínas
/
Dipeptídeos
Tipo de estudo:
Health_economic_evaluation
/
Prognostic_studies
Idioma:
En
Revista:
J Chem Phys
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China