Your browser doesn't support javascript.
loading
Socioeconomic bias in influenza surveillance.
Scarpino, Samuel V; Scott, James G; Eggo, Rosalind M; Clements, Bruce; Dimitrov, Nedialko B; Meyers, Lauren Ancel.
Afiliação
  • Scarpino SV; Network Science Institute, Northeastern University, Boston, Massachusetts, United States of America.
  • Scott JG; Marine & Environmental Sciences, Northeastern University, Boston, Massachusetts, United States of America.
  • Eggo RM; Physics, Northeastern University, Boston, Massachusetts, United States of America.
  • Clements B; Health Sciences, Northeastern University, Boston, Massachusetts, United States of America.
  • Dimitrov NB; ISI Foundation, Turin, Italy.
  • Meyers LA; Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, United States of America.
PLoS Comput Biol ; 16(7): e1007941, 2020 07.
Article em En | MEDLINE | ID: mdl-32644990
Individuals in low socioeconomic brackets are considered at-risk for developing influenza-related complications and often exhibit higher than average influenza-related hospitalization rates. This disparity has been attributed to various factors, including restricted access to preventative and therapeutic health care, limited sick leave, and household structure. Adequate influenza surveillance in these at-risk populations is a critical precursor to accurate risk assessments and effective intervention. However, the United States of America's primary national influenza surveillance system (ILINet) monitors outpatient healthcare providers, which may be largely inaccessible to lower socioeconomic populations. Recent initiatives to incorporate Internet-source and hospital electronic medical records data into surveillance systems seek to improve the timeliness, coverage, and accuracy of outbreak detection and situational awareness. Here, we use a flexible statistical framework for integrating multiple surveillance data sources to evaluate the adequacy of traditional (ILINet) and next generation (BioSense 2.0 and Google Flu Trends) data for situational awareness of influenza across poverty levels. We find that ZIP Codes in the highest poverty quartile are a critical vulnerability for ILINet that the integration of next generation data fails to ameliorate.
Assuntos

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Fatores Socioeconômicos / Viés / Vigilância da População / Influenza Humana Tipo de estudo: Screening_studies Aspecto: Determinantes_sociais_saude Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Fatores Socioeconômicos / Viés / Vigilância da População / Influenza Humana Tipo de estudo: Screening_studies Aspecto: Determinantes_sociais_saude Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos