Using machine learning to aid treatment decision and risk assessment for severe three-vessel coronary artery disease.
J Geriatr Cardiol
; 19(5): 367-376, 2022 May 28.
Article
em En
| MEDLINE
| ID: mdl-35722036
BACKGROUND: Three-vessel disease (TVD) with a SYNergy between PCI with TAXus and cardiac surgery (SYNTAX) score of ≥ 23 is one of the most severe types of coronary artery disease. We aimed to take advantage of machine learning to help in decision-making and prognostic evaluation in such patients. METHODS: We analyzed 3786 patients who had TVD with a SYNTAX score of ≥ 23, had no history of previous revascularization, and underwent either coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) after enrollment. The patients were randomly assigned to a training group and testing group. The C4.5 decision tree algorithm was applied in the training group, and all-cause death after a median follow-up of 6.6 years was regarded as the class label. RESULTS: The decision tree algorithm selected age and left ventricular end-diastolic diameter (LVEDD) as splitting features and divided the patients into three subgroups: subgroup 1 (age of ≤ 67 years and LVEDD of ≤ 53 mm), subgroup 2 (age of ≤ 67 years and LVEDD of > 53 mm), and subgroup 3 (age of > 67 years). PCI conferred a patient survival benefit over CABG in subgroup 2. There was no significant difference in the risk of all-cause death between PCI and CABG in subgroup 1 and subgroup 3 in both the training data and testing data. Among the total study population, the multivariable analysis revealed significant differences in the risk of all-cause death among patients in three subgroups. CONCLUSIONS: The combination of age and LVEDD identified by machine learning can contribute to decision-making and risk assessment of death in patients with severe TVD. The present results suggest that PCI is a better choice for young patients with severe TVD characterized by left ventricular dilation.
Texto completo:
1
Temas:
ECOS
/
Aspectos_gerais
Bases de dados:
MEDLINE
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
J Geriatr Cardiol
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China