Your browser doesn't support javascript.
loading
Contact Endoscopy - Narrow Band Imaging (CE-NBI) data set for laryngeal lesion assessment.
Esmaeili, Nazila; Davaris, Nikolaos; Boese, Axel; Illanes, Alfredo; Navab, Nassir; Friebe, Michael; Arens, Christoph.
Afiliação
  • Esmaeili N; Department of Otorhinolaryngology, Head and Neck Surgery, Justus Liebig University of Giessen, 35392, Giessen, Germany. nazila.esmaeili@tum.de.
  • Davaris N; Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, 85748, Munich, Germany. nazila.esmaeili@tum.de.
  • Boese A; SURAG Medical GmbH, 04103, Leipzig, Germany. nazila.esmaeili@tum.de.
  • Illanes A; Department of Otorhinolaryngology, Head and Neck Surgery, Giessen University Hospital, 35392, Giessen, Germany.
  • Navab N; Department of Otorhinolaryngology, Head and Neck Surgery, Magdeburg University Hospital, 39120, Magdeburg, Germany.
  • Friebe M; INKA-Innovation Laboratory for Image Guided Therapy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
  • Arens C; SURAG Medical GmbH, 04103, Leipzig, Germany.
Sci Data ; 10(1): 733, 2023 10 21.
Article em En | MEDLINE | ID: mdl-37865668
The endoscopic examination of subepithelial vascular patterns within the vocal fold is crucial for clinicians seeking to distinguish between benign lesions and laryngeal cancer. Among innovative techniques, Contact Endoscopy combined with Narrow Band Imaging (CE-NBI) offers real-time visualization of these vascular structures. Despite the advent of CE-NBI, concerns have arisen regarding the subjective interpretation of its images. As a result, several computer-based solutions have been developed to address this issue. This study introduces the CE-NBI data set, the first publicly accessible data set that features enhanced and magnified visualizations of subepithelial blood vessels within the vocal fold. This data set encompasses 11144 images from 210 adult patients with pathological vocal fold conditions, where CE-NBI images are annotated using three distinct label categories. The data set has proven invaluable for numerous clinical assessments geared toward diagnosing laryngeal cancer using Optical Biopsy. Furthermore, given its versatility for various image analysis tasks, we have devised and implemented diverse image classification scenarios using Machine Learning (ML) approaches to address critical clinical challenges in assessing laryngeal lesions.
Assuntos

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Neoplasias Laríngeas / Laringoscopia / Laringe Limite: Adult / Humans Idioma: En Revista: Sci Data Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Temas: ECOS / Aspectos_gerais Bases de dados: MEDLINE Assunto principal: Neoplasias Laríngeas / Laringoscopia / Laringe Limite: Adult / Humans Idioma: En Revista: Sci Data Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha