Your browser doesn't support javascript.
loading
A literature review of quality assessment and applicability to HTA of risk prediction models of coronary heart disease in patients with diabetes.
Jiu, Li; Wang, Junfeng; Javier Somolinos-Simón, Francisco; Tapia-Galisteo, Jose; García-Sáez, Gema; Hernando, Mariaelena; Li, Xinyu; Vreman, Rick A; Mantel-Teeuwisse, Aukje K; Goettsch, Wim G.
Afiliação
  • Jiu L; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.
  • Wang J; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.
  • Javier Somolinos-Simón F; Bioengineering and Telemedicine Group, Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, Km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain.
  • Tapia-Galisteo J; Bioengineering and Telemedicine Group, Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, Km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain; CIBER-BBN: Networking Research Centre for Bioengineering, Biomate
  • García-Sáez G; Bioengineering and Telemedicine Group, Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, Km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain; CIBER-BBN: Networking Research Centre for Bioengineering, Biomate
  • Hernando M; Bioengineering and Telemedicine Group, Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, Km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain; CIBER-BBN: Networking Research Centre for Bioengineering, Biomate
  • Li X; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands; University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Broerstraat 5, 9712
  • Vreman RA; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands; National Health Care Institute (ZIN), Diemen, Willem Dudokhof 1, 1112 ZA Diemen, Netherlands.
  • Mantel-Teeuwisse AK; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.
  • Goettsch WG; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands; National Health Care Institute (ZIN), Diemen, Willem Dudokhof 1, 1112 ZA Diemen, Netherlands. Electronic address: W.G.Goet
Diabetes Res Clin Pract ; 209: 111574, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38346592
ABSTRACT
This literature review had two

objectives:

to identify models for predicting the risk of coronary heart diseases in patients with diabetes (DM); and to assess model quality in terms of risk of bias (RoB) and applicability for the purpose of health technology assessment (HTA). We undertook a targeted review of journal articles published in English, Dutch, Chinese, or Spanish in 5 databases from 1st January 2016 to 18th December 2022, and searched three systematic reviews for the models published after 2012. We used PROBAST (Prediction model Risk Of Bias Assessment Tool) to assess RoB, and used findings from Betts et al. 2019, which summarized recommendations and criticisms of HTA agencies on cardiovascular risk prediction models, to assess model applicability for the purpose of HTA. As a result, 71 % and 67 % models reporting C-index showed good discrimination abilities (C-index >= 0.7). Of the 26 model studies and 30 models identified, only one model study showed low RoB in all domains, and no model was fully applicable for HTA. Since the major cause of high RoB is inappropriate use of analysis method, we advise clinicians to carefully examine the model performance declared by model developers, and to trust a model if all PROBAST domains except analysis show low RoB and at least one validation study conducted in the same setting (e.g. country) is available. Moreover, since general model applicability is not informative for HTA, novel adapted tools may need to be developed.
Assuntos
Palavras-chave

Texto completo: 1 Temas: ECOS / Aspectos_gerais / Avaliacao_tecnologia Bases de dados: MEDLINE Assunto principal: Doença das Coronárias / Diabetes Mellitus Tipo de estudo: Etiology_studies / Guideline / Health_technology_assessment / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Diabetes Res Clin Pract Assunto da revista: ENDOCRINOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Temas: ECOS / Aspectos_gerais / Avaliacao_tecnologia Bases de dados: MEDLINE Assunto principal: Doença das Coronárias / Diabetes Mellitus Tipo de estudo: Etiology_studies / Guideline / Health_technology_assessment / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Diabetes Res Clin Pract Assunto da revista: ENDOCRINOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Holanda