Your browser doesn't support javascript.
loading
Unveiling the potential of machine learning in cost-effective degradation of pharmaceutically active compounds: A stirred photo-reactor study.
Acosta-Angulo, B; Lara-Ramos, J; Niño-Vargas, A; Diaz-Angulo, J; Benavides-Guerrero, J; Bhattacharya, A; Cloutier, S; Machuca-Martínez, F.
Afiliação
  • Acosta-Angulo B; Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia.
  • Lara-Ramos J; Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia.
  • Niño-Vargas A; Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia.
  • Diaz-Angulo J; Research and Technological Development in Water Treatment, Processes Modelling and Disposal of Residues - GITAM, Cauca, Colombia.
  • Benavides-Guerrero J; Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada.
  • Bhattacharya A; Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada.
  • Cloutier S; Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada.
  • Machuca-Martínez F; Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia. Electronic address: fiderman.machuca@correounivalle.edu.co.
Chemosphere ; 358: 142222, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38714249
ABSTRACT
In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs) Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.
Assuntos

Texto completo: 1 Temas: ECOS / Aspectos_gerais / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Diclofenaco / Ibuprofeno / Redes Neurais de Computação / Aprendizado de Máquina / Peróxido de Hidrogênio Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia

Texto completo: 1 Temas: ECOS / Aspectos_gerais / Financiamentos_gastos Bases de dados: MEDLINE Assunto principal: Diclofenaco / Ibuprofeno / Redes Neurais de Computação / Aprendizado de Máquina / Peróxido de Hidrogênio Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia