Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Bioorg Chem ; 145: 107235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447464

ABSTRACT

Protein kinase dysregulation was strongly linked to cancer pathogenesis. Moreover, histone alterations were found to be among the most important post-translational modifications that could contribute to cancer growth and development. In this context, haspin, an atypical serine/threonine kinase, phosphorylates histone H3 at threonine-3 and is notably overexpressed in various common cancer types. Herein, we report novel 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Amide coupling at N1 of the indazole ring with m-hydroxyphenyl acetic acid yielded compound 21 with an IC50 value of 78 nM against haspin. This compound showed a meaningful selectivity over 15 of the most common off-targets, including Clk 1-3 and Dyrk1A, 1B, and 2. The most potent haspin inhibitors 5 and 21 effectively inhibited the growth of the NCI-60 cancer cell lines, further emphasizing the success of our scaffold as a new selective lead for the development of anti-cancer therapeutic agents.


Subject(s)
Antineoplastic Agents , Intracellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins/metabolism , Indazoles/pharmacology , Protein Serine-Threonine Kinases , Histones/metabolism , Phosphorylation , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology
2.
Arch Pharm (Weinheim) ; 357(6): e2400020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478964

ABSTRACT

Haspin and Clk4 are both understudied protein kinases (PKs), offering potential targets for the development of new anticancer agents. Thus, the identification of new inhibitors targeting these PKs is of high interest. However, the inhibitors targeting haspin or Clk4 developed to date show a poor selectivity profile over other closely related PKs, increasing the risk of side effects. Herein, we present two newly developed N1-benzyolated 5-(4-pyridinyl)indazole-based inhibitors (18 and 19), derived from a newly identified indazole hit. These inhibitors exhibit an exceptional inhibitory profile toward haspin and/or Clk4. Compound 18 (2-acetyl benzoyl) showed a preference to inhibit Clk4 and haspin over a panel of closely related kinases, with sixfold selectivity for Clk4 (IC50 = 0.088 and 0.542 µM, respectively). Compound 19 (4-acetyl benzoyl) showed high selectivity against haspin over the common off-target kinases (Dyrks and Clks) with an IC50 of 0.155 µM for haspin. Molecular docking studies explained the remarkable selectivity of 18 and 19, elucidating how the new scaffold can be modified to toggle between inhibition of haspin or Clk4, despite the high homology of the ATP-binding sites. Their distinguished profile allows these compounds to be marked as interesting chemical probes to assess the selective inhibition of haspin and/or Clk4.


Subject(s)
Indazoles , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Indazoles/pharmacology , Indazoles/chemistry , Indazoles/chemical synthesis , Humans , Structure-Activity Relationship , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
3.
Arch Pharm (Weinheim) ; 357(4): e2300656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38304944

ABSTRACT

Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Structure-Activity Relationship , Bacteria , Pyrimidines/pharmacology , Microbial Sensitivity Tests
4.
Drug Dev Res ; 85(5): e22228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952003

ABSTRACT

Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 µM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.


Subject(s)
Antineoplastic Agents , Chromones , ErbB Receptors , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 3 , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Mice , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/therapeutic use , Drug Design , Apoptosis/drug effects , Cell Proliferation/drug effects
5.
Med Res Rev ; 43(2): 343-398, 2023 03.
Article in English | MEDLINE | ID: mdl-36262046

ABSTRACT

Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.


Subject(s)
Alzheimer Disease , Drug Discovery , Animals , Mice , Structure-Activity Relationship , Alternative Splicing , Protein Kinase Inhibitors/pharmacology
6.
J Enzyme Inhib Med Chem ; 38(1): 2175821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36789662

ABSTRACT

Neurodegenerative diseases such as Alzheimer's disease (AD) are multifactorial with several different pathologic mechanisms. Therefore, it is assumed that multitargeted-directed ligands (MTDLs) which interact with different biological targets relevant to the diseases, might offer an improved therapeutic alternative than using the traditional "one-target, one-molecule" approach. Herein, we describe new benzothiazole-based derivatives as a privileged scaffold for histamine H3 receptor ligands (H3R). The most affine compound, the 3-(azepan-1-yl)propyloxy-linked benzothiazole derivative 4b, displayed a Ki value of 0.012 µM. The multitargeting potential of these H3R ligands towards AChE, BuChE and MAO-B enzymes was evaluated to yield compound 3s (pyrrolidin-1-yl-(6-((5-(pyrrolidin-1-yl)pentyl)oxy)benzo[d]thiazol-2-yl)methanone) as the most promising MTDL with a Ki value of 0.036 µM at H3R and IC50 values of 6.7 µM, 2.35 µM, and 1.6 µM towards AChE, BuChE, and MAO-B, respectively. These findings suggest that compound 3s can be a lead structure for developing new multi-targeting anti-AD agents.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Benzothiazoles/pharmacology , Ligands
7.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37339785

ABSTRACT

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Subject(s)
Antineoplastic Agents , Melatonin , Neoplasms , Vorinostat/pharmacology , Histone Deacetylases/metabolism , Histone Deacetylases/pharmacology , Melatonin/pharmacology , Ligands , Structure-Activity Relationship , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydroxamic Acids/pharmacology , Cell Line, Tumor , Cell Proliferation , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Histone Deacetylase 6
8.
Molecules ; 28(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677898

ABSTRACT

It has been shown that phosphodiesterase 5 (PDE5) inhibitors have anticancer effects in a variety of malignancies in both in vivo and in vitro experiments. The role of cGMP elevation in colorectal carcinoma (CRC) has been extensively studied. Additionally, DNA topoisomerase II (Topo II) inhibition is a well-established mechanism of action that mediates the effects of several approved anticancer drugs such as doxorubicin and mitoxantrone. Herein, we present 9-benzylaminoacridine derivatives as dual inhibitors of the PDE5 and Topo II enzymes. We synthesized 31 derivatives and evaluated them against PDE5, whereby 22 compounds showed micromolar or sub-micromolar inhibition. The anticancer activity of the compounds was evaluated with the NCI 60-cell line testing. Moreover, the effects of the compounds on HCT-116 colorectal carcinoma (CRC) were extensively studied, and potent compounds against HCT-116 cells were studied for their effects on Topo II, cell cycle progression, and apoptosis. In addition to exhibiting significant growth inhibition against HCT116 cells, compounds 11, 12, and 28 also exhibited the most superior Topo II inhibitory activity and low micromolar PDE5 inhibition and affected cell cycle progression. Knowing that compounds that combat cancer through multiple mechanisms are among the best candidates for effective therapy, we believe that the current class of compounds merits further optimization and investigation to unleash their full therapeutic potential.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Phosphodiesterase 5 Inhibitors , Topoisomerase II Inhibitors , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , DNA Topoisomerases, Type II/metabolism , Drug Screening Assays, Antitumor , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology
9.
Mol Pharm ; 19(9): 3163-3177, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35876358

ABSTRACT

Increasing antibiotic concentrations within bacterial cells while reducing them in mammalian ones would ultimately result in an enhancement of antibacterial actions, overcoming multidrug resistance, all while minimizing toxicity. Nanoparticles (NPs) have been used in numerous occasions to overcome antibiotic resistance, poor drug solubility, and stability. However, the concomitant increase in antibiotic concentration in mammalian cells and the resultant toxicity are usually overlooked. Without compromising bacterial cell fusion, large liposomes (Lip) have been reported to show reduced uptake in mammalian cells. Therefore, in this work, small NP fraught liposomes (NP-Lip) were formulated with the aim of increasing NP uptake and antibiotic delivery in bacterial cells but not in mammalian ones. Small polylactic-co-glycolic acid NPs were therefore loaded with erythromycin (Er), an antibiotic with low membrane permeability that is susceptible to drug efflux, and 3c, a 5-cyanothiazolyl urea derivative with low solubility and stability. In vitro experiments demonstrated that the incorporation of small NPs into large Lip resulted in a reduction in NP uptake by HEK293 cells while increasing it in Gram-negative bacteria (Escherichia coli DH5α, E. coli K12, and Pseudomonas aeruginosa), consequently resulting in an enhancement of antibiotic selectivity by fourfold toward E. coli (both strains) and eightfold toward P. aeruginosa. Ocular administration of NP-Lip in a P. aeruginosa keratitis mouse model demonstrated the ability of Er/3c-loaded NP-Lip to result in a complete recovery. More importantly, in comparison to NPs, the ocular administration of NP-Lip showed a reduction in TNF-alpha and IL-6 levels, implying reduced interaction with mammalian cells in vivo. This work therefore clearly demonstrated how tailoring the nano-bio interaction could result in selective drug delivery and a reduction in toxicity.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Animals , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Escherichia coli/metabolism , HEK293 Cells , Humans , Liposomes/metabolism , Mammals/metabolism , Mice , Microbial Sensitivity Tests , Pseudomonas aeruginosa
10.
Bioorg Med Chem Lett ; 59: 128531, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35007723

ABSTRACT

Bacterial resistance to currently used antibiotics demands the development of novel antibacterial agents with good safety margins and sufficient efficacy against multi-drug resistant isolates. We have previously described the synthesis of N-butyl-2-(butylthio)quinazolin-4-amine (I) as an optimized hit with broad-spectrum antibacterial activity and low cytotoxicity. In addition, we have identified a potential growing vector for this series of compounds. Herein, we describe further hit optimization which includes systematic diversifications of both the benzenoid part and the substituents at position 6 and 7 of compound I. Growing of the molecule beside the core modifications yielded several compounds with remarkable anti(myco)bacterial activity against a panel of pathogenic bacteria, including drug-resistant strains. Compound 12 showed a 2-4 fold improvement in activity than I against S. aureus Newman, S. pneumoniae DSM-20566 and E. faecalis DSM-20478. The compounds also showed a good safety profile towards human HepG2 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzene Derivatives/pharmacology , Enterococcus faecalis/drug effects , Quinazolines/pharmacology , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzene Derivatives/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
11.
Bioorg Chem ; 127: 105977, 2022 10.
Article in English | MEDLINE | ID: mdl-35779404

ABSTRACT

The transcription factor NF-κB is a pivotal mediator of chronic inflammatory and autoimmune diseases. Based on our previously published dual EGFR/NF-κB inhibitors, we designed and synthesized new thiourea quinazoline derivatives that retained only the NF-κB inhibitory activity. Several congeners displayed a strong suppression of NF-κB activity in a reporter gene assay, yet low cytotoxicity, and were further evaluated in differentiated macrophage-like THP-1 cells. The compounds exhibited a strong inhibition of IL-6 and, less potently, of TNFα release, which was accompanied by a selective induction of macrophage cell death. The mode of action was investigated with a selected inhibitor, 18, revealing that the translocation of p65/RelA to the nucleus but not its release from the IκB complex was inhibited. Eventually, 18 was identified as the first small molecule inhibitor affecting only the phosphorylation of p65-Ser468 but not of Ser536, which may be causally related to the retention of NF-κB in the cytoplasm. Altogether, our novel NF-κB inhibitors seem applicable for the suppression of cytokine release and the additional selective depletion of activated macrophages in various inflammatory diseases.


Subject(s)
NF-kappa B , Phenylthiourea , Anti-Inflammatory Agents/pharmacology , ErbB Receptors/metabolism , Lipopolysaccharides , NF-kappa B/metabolism , Phosphorylation
12.
J Sep Sci ; 45(14): 2488-2497, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35567798

ABSTRACT

The first licensed polymerase inhibitor, baloxavir marboxil was recently approved for the treatment of influenza A and B viruses. Furthermore, there is growing interest in testing the antiviral activity of baloxavir marboxil against Coronavirus. Despite its critical clinical value, there is no information on the degradation products, pathways, or kinetics of baloxavir marboxil under various stress conditions. In this study, a new high-performance liquid chromatography-ultraviolet detection method for accurately quantifying baloxavir marboxil in the presence of its degradation products was developed. A study of degradation kinetics revealed that acidic, thermal neutral, and photolytic degradation reactions have zero-order kinetics, whereas basic and oxidative degradation reactions have first-order kinetics. The structural characterization of baloxavir marboxil degradation products was performed by coupling the optimized high-performance liquid chromatography method to the triple-quadrupole tandem mass spectrometer. The proposed approach was validated according to the International Council for Harmonisation Q2 (R1) requirements for accuracy, precision, robustness, specificity, and linearity. The validated new method was successfully used to analyze baloxavir marboxil as raw material and its pharmaceutical dosage form, Xofluza.


Subject(s)
Influenza, Human , Thiepins , Antiviral Agents/therapeutic use , Chromatography, High Pressure Liquid , Dibenzothiepins , Humans , Influenza, Human/drug therapy , Mass Spectrometry , Morpholines , Oxazines/therapeutic use , Pyridines , Pyridones , Thiepins/therapeutic use , Triazines
13.
Bioorg Chem ; 117: 105422, 2021 12.
Article in English | MEDLINE | ID: mdl-34700110

ABSTRACT

The emergence of bacterial resistance has triggered a multitude of efforts to develop new antibacterial agents. There are many compounds in literature that were reported as potent antibacterial agents, however, they lacked the required safety to mammalian cells or no clear picture about their toxicity profile was presented. Inspired by discovered hit from our in-house library and by previously reported 2,4-diaminosubstituted quinazolines, we describe the design and synthesis of novel 2,4-disubstituted-thioquinazolines (3-13 and 36), 2-thio-4-amino substituted quinazolines (14-33) and 6-substituted 2,4-diamonsubstituted quinazolines (37-39). The synthesized compounds showed potent antibacterial activity against a panel of Gram-positive, efflux deficient E.coli and Mycobacterium smegmatis. The panel also involved resistant strains including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium, in addition to Mycobacterium smegmatis. The newly synthesized compounds revealed MIC values against the tested strains ranging from 1 to 64 µg/mL with a good safety profile. Most of the 2-thio-4-amino substituted-quinazolines showed significant antimycobacterial activity with the variations at position 2 and 4 offering additional antibacterial activity against the different strains. Compared to previously reported 2,4-diaminosubstituted quinazolines, the bioisosteric replacement of the 2-amino with sulfur offered a successful approach to keep the high antibacterial potency while substantially improving safety profile as indicated by the reduced activity on different cell lines and a lack of hemolytic activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Quinazolines/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , CHO Cells , Cell Survival/drug effects , Cricetulus , Dose-Response Relationship, Drug , Enterococcus faecalis/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium smegmatis/drug effects , Quinazolines/chemical synthesis , Quinazolines/chemistry , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Structure-Activity Relationship
14.
Bioorg Chem ; 114: 105143, 2021 09.
Article in English | MEDLINE | ID: mdl-34328854

ABSTRACT

A series of 2-arylthiazolidine-4-carboxylic acid amide derivatives were synthesized and their cytotoxic activity against three cancer cell lines (PC-3, SKOV3 and MDA-MB231) was evaluated. Various structural modifications were tried including modifications of the length of the amide chain and modifications of the 2-aryl part using disubstituted phenyl and thiophene derivatives. The structure activity relationship was evaluated based on the in vitro biological evaluation against the above mentioned three cancer cell lines. The most selective compounds towards cancer cells were further evaluated against DLD-1, NCI-H520, Du145, MCF-7 and NCI-N87 cancer cells. The dodecyl amide having the 4-bromothienyl as the 2-aryl, compound 2e, exhibited the highest selectivity for cancer cells vs non-tumor cells. Mechanistic studies of the anticancer effect of compound 2e in prostate cancer PC-3 and colorectal cancer DLD-1 cells revealed that 2e could prevent the cell cycle in the G0/G1 phase by up-regulating the expression of p21 and reducing the expression of CDK2 and cyclin E. It increased the pro-apoptotic protein Bax and cleaved caspase 3, and down-regulated the expression of anti-apoptotic protein Bcl-2 to induce apoptosis. In addition, 2e also downregulated AKT, N-cadherin, and vimentin proteins expression giving indication that 2e inhibit the PI3K/AKT pathway to regulate cell cycle arrest and induce apoptosis, and can regulate the expression of epithelial-mesenchymal transition-related proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Thiazolidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Quantitative Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry
15.
Molecules ; 26(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668683

ABSTRACT

Clks have been shown by recent studies to be promising targets for cancer therapy, as they are considered key regulators in the process of pre-mRNA splicing, which in turn affects every aspect of tumor biology. In particular, Clk1 and -4 are overexpressed in several human tumors. Most of the potent Clk1 inhibitors reported in the literature are non-selective, mainly showing off-target activity towards Clk2, Dyrk1A and Dyrk1B. Herein, we present new 5-methoxybenzothiophene-2-carboxamide derivatives with unprecedented selectivity. In particular, the introduction of a 3,5-difluoro benzyl extension to the methylated amide led to the discovery of compound 10b (cell-free IC50 = 12.7 nM), which was four times more selective for Clk1 over Clk2 than the previously published flagship compound 1b. Moreover, 10b showed an improved growth inhibitory activity with T24 cells (GI50 = 0.43 µM). Furthermore, a new binding model in the ATP pocket of Clk1 was developed based on the structure-activity relationships derived from new rigidified analogues.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Thiophenes/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Substrate Specificity/drug effects , Thiophenes/chemistry
16.
Bioorg Chem ; 99: 103759, 2020 06.
Article in English | MEDLINE | ID: mdl-32220665

ABSTRACT

There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbohydrate Dehydrogenases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Escherichia coli K12/drug effects , Pyrazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli K12/enzymology , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
17.
Bioorg Chem ; 102: 104089, 2020 09.
Article in English | MEDLINE | ID: mdl-32717691

ABSTRACT

Novel symmetric molecules, bearing a benzidine prolinamide core, two terminal carbamate caps of variable sizes and nature, including natural and unnatural amino acids were developed. Several terminal N-carbamate substituents of the core structure, ranging from linear methyl, ethyl and butyl groups to branching isobutyl group; and an aromatic substituent were also synthesized. Series 1 has hydrophobic AA residues, namely S and R phenylglycine and a terminal carbamate capping group, whereas Series 2 bears sulphur containing amino acids, specifically S and R methionine and the natural R methylcysteine. The novel compounds were tested for their inhibitory activity (EC50) and their cytotoxicity (CC50), using an HCV 1b (Con1) reporter replicon cell line. Compound 4 with the unnatural capping residue, bearing d-Phenylglycine amino acid residue and N-isobutyloxycarbonyl capping group, was the most active within the two series, with EC50 = 0.0067 nM. Moreover, it showed high SI50 > 14788524 and was not cytotoxic at the highest tested concentration (100 µΜ), indicating its safety profile. Compound 4 also inhibited HCV genotypes 2a, 3a and 4a. Compared to the clinically approved NS5A inhibitor Daclatasvir, compound 4 shows higher activity against genotypes 1b and 3a, as well as improved safety profile.


Subject(s)
Amino Acids/pharmacology , Antiviral Agents/pharmacology , Benzidines/pharmacology , Carbamates/pharmacology , Hepacivirus/drug effects , Amino Acids/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzidines/chemical synthesis , Benzidines/chemistry , Carbamates/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , RNA, Viral/drug effects , Stereoisomerism , Structure-Activity Relationship
18.
Bioorg Chem ; 104: 104322, 2020 11.
Article in English | MEDLINE | ID: mdl-33142429

ABSTRACT

Celecoxib, is a selective cyclooxygenase-2 (COX2) inhibitor with a 1,5-diaryl pyrazole scaffold. Celecoxib has a better safety profile compared to other COX2 inhibitors having side effects of systemic hypertension and thromboembolic complications. This may be partly attributed to an off-target activity involving phosphodiesterase 5 (PDE5) inhibition and the potentiation of NO/cGMP signalling allowing coronary vasodilation and aortic relaxation. Inspired by the structure of celecoxib, we synthesized a chemically diverse series of compounds containing a 1,3,5-trisubstituted pyrazoline scaffold to improve PDE5 inhibitory potency, while eliminating COX2 inhibitory activity. SAR studies for PDE5 inhibition revealed an essential role for a carboxylic acid functionality at the 1-phenyl and the importance of the non-planar pyrazoline core over the planar pyrazole with the 5-phenyl moiety tolerating a range of substituents. These modifications led to new PDE5 inhibitors with approximately 20-fold improved potency to inhibit PDE5 and no COX-2 inhibitory activity compared with celecoxib. PDE isozyme profiling of compound 11 revealed a favorable selectivity profile. These results suggest that trisubstituted pyrazolines provide a promising scaffold for further chemical optimization to identify novel PDE5 inhibitors with potential for less side effects compared with available PDE5 inhibitors used for the treatment of penile erectile dysfunction and pulmonary hypertension.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Discovery , Phosphodiesterase 5 Inhibitors/pharmacology , Pyrazoles/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phosphodiesterase 5 Inhibitors/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
19.
Bioorg Chem ; 98: 103742, 2020 05.
Article in English | MEDLINE | ID: mdl-32199305

ABSTRACT

Herein we present the synthesis and characterization of a novel chemical series of tadalafil analogues that display different pharmacological profiles. Compounds that have the 6R, 12aR configuration and terminal carboxylic acid group at the side chain arising from the piperazinedione nitrogen were potent PDE5 inhibitors, with compound 11 having almost equal potency to tadalafil and superior selectivity over PDE11, the most common off-target for tadalafil. Modifying the stereochemistry into 6S, 12aS configuration and adopting the hydroxamic acid moiety as a terminal group gave rise to compounds that only inhibited HDAC. Dual PDE5/HDAC inhibition could be achieved with compounds having 6R, 12aR configuration and hydroxamic acid moiety as a terminal group. The anticancer activity of the synthesized compounds was evaluated against a diverse number of cell lines of different origin. The compounds elicited anticancer activity against cell lines belonging to lymphoproliferative cancer as well as solid tumors. Despite the previous reports suggesting anticancer activity of PDE5 inhibitors, the growth inhibitory activity of the compounds seemed to be solely dependent on HDAC inhibition. Compound 26 (pan HDAC IC50 = 14 nM, PDE5 IC50 = 46 nM) displayed the most potent anticancer activity in the present series and was shown to induce apoptosis in Molt-4 cells. HDAC isoform selectivity testing for compound 26 showed that it is more selective for HDAC6 and 8 over HDAC1 by more than 20-fold.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Development , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , Tadalafil/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 5 Inhibitors/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemistry , Structure-Activity Relationship , Tadalafil/chemical synthesis , Tadalafil/chemistry
20.
Bioorg Chem ; 95: 103517, 2020 01.
Article in English | MEDLINE | ID: mdl-31884138

ABSTRACT

The ongoing prevalence of multidrug-resistant bacterial pathogens requires the development of new effective antibacterial agents. In this study, two series of halogenated 1,3-thiazolidin-4-ones were synthesized and characterized. All the synthesized thiazolidinone derivatives were evaluated for their antimicrobial activity. Biological screening of the tested compounds revealed the antibacterial activity of the chlorinated thiazolidinones 4a, 4b and 4c against Escherichia coli TolC-mutant, with MIC values of 16 µg/mL. A combination of a sub-inhibitory concentration of colistin (0.25 × MIC) with compounds 4a, 4b or 4c showed antibacterial activity against different Gram-negative bacteria (MICs = 4-16 µg/mL). Interestingly, compounds 4a, 4b and 4c were not cytotoxic to murine fibroblasts and Caco-2 cells. The chlorinated thiazolidinone derivative 16d demonstrated a bacteriostatic activity against a panel of pathogenic Gram-positive bacteria, including clinical isolates of methicillin and vancomycin-resistant Staphylococcus aureus, Listeria monocytogenes and multidrug-resistant Staphylococcus epidermidis (MICs = 8 - 64 µg/mL), with no cytotoxicity against both Caco-2 and L929 cells. Compound 16d was superior to vancomycin in disruption of the pre-formed MRSA biofilm. Furthermore, the three fluorinated thiazolidinone derivatives 26c, 30c and 33c showed a hindrance to hemolysin activity, without cytotoxicity against L929 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Caco-2 Cells , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL