Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Haemophilia ; 29(3): 844-854, 2023 May.
Article in English | MEDLINE | ID: mdl-36930806

ABSTRACT

INTRODUCTION: Haemophilia B (HB) is associated with pathogenic variants in F9. Hemizygous deletions encompassing the entire F9 and proximate genes may express extra-haematological clinical phenotypes. AIM: To analyse the genotype/phenotype correlations in two unrelated boys with severe early childhood obesity (SCO), global developmental delay (GDD) and similar bleeding phenotype associated with comparable Xq27 deletions spanning the entire F9 and proximate genes, and characterise the pathogenic events estimating the most likely mutational mechanism involved. METHODS: Entire F9-deletions were detected in three hemizygous unrelated probands with HB: two cases, C#1/C#2, presented SCO and GDD and a control patient (Co), who only had severe bleeding symptoms. Dense SNP-array and case-specific STS walking scan allowed characterisation of the deletion breakpoints. Extensive use of bioinformatics, statistics and clinical databases allowed the investigation of genotype-phenotype associations. RESULTS: Patients C#1/C#2 and Co resulted in a complete F9 and additional gene deletions of variable extensions on Xq26.3-Xq27.2 (C#1/C#2/Co: 4.3Mb/3.9Mb/160Kb). C#1/C#2 common deleted gene SOX3 is directly associated with SCO, GDD and pituitary hypothyroidism (PH) whilst C#2 extra-deleted gene MAGEC2 indirectly relates to anal atresia (AA). Breakpoint analysis revealed the involvement of the mechanisms of Alu/Alu recombination for the first time in HB and non-homologous or alternative end-joining. CONCLUSION: Our results represent the first report of unrelated patients with HB, SCO and GDD. This study and the literature update expand the spectrum of clinical findings and molecular insights observed in patients with HB caused by complete F9 and nearby SOX3 and MAGEC2 gene deletions, which may configure a contiguous gene syndrome.


Subject(s)
Hemophilia B , Pediatric Obesity , Humans , Hemophilia B/genetics , Mutation , Phenotype , Computational Biology
3.
Mol Cell Endocrinol ; 558: 111748, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35995307

ABSTRACT

Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.1.1. The proportion of missense cysteine variants and nonsense, frameshift, and splice acceptor/donor variants were analyzed in each ethnic group (European (Non-Finnish), European (Finnish), African/African Americans, Latino/Admixed American, East Asian, South Asian, Ashkenazi Jewish, Other). The results showed a clear predominance of frameshift variants in the East Asian (82%) and European (Finnish) (75%) population, whereas the splice site variants predominate in African/African Americans (99.46%), Other (96%), Latino/Admixed American (94%), South Asian (86%), European (Non-Finnish) (56%) and Ashkenazi Jewish (56%) populations. The analysis of the distribution of the variants indexed in gnomAD v2.1.1 database revealed that most missense variants identified in the An peroxidase domain map in exon 8, followed by exons 11, 7 and 9, and finally in descending order by exons 10, 6, 12 and 5. In total, 183 novel TPO variants were described (13 missense cysteine's variants, 158 missense variants involving the An peroxidase domain and 12 splicing acceptor or donor sites variants) which were not reported in the literature and that would have deleterious effects on prediction programs. In the gnomAD v2.1.1 population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:77. In conclusion, we provide an updated and curated reference source of new TPO variants for application in clinical diagnosis and genetic counseling. Also, this work contributes to elucidating the molecular basis of CH associated with TPO defects.


Subject(s)
Congenital Hypothyroidism , Thyroglobulin , Humans , Thyroglobulin/genetics , Iodide Peroxidase/genetics , Monoiodotyrosine/genetics , Iodides , Computational Biology , Cysteine , Congenital Hypothyroidism/genetics , Thyroid Hormones , Mutation/genetics , Peroxidases/genetics , Algorithms
4.
Int J Mol Sci ; 12(10): 7271-85, 2011.
Article in English | MEDLINE | ID: mdl-22072947

ABSTRACT

The factor VIII gene (F8) intron 22 inversion (Inv22) is a paradigmatic duplicon-mediated rearrangement, found in about one half of patients with severe hemophilia A worldwide. The identification of this prevalent cause of hemophilia was delayed for nine years after the F8 characterization in 1984. The aim of this review is to present the wide diversity of practical approaches that have been developed for genotyping the Inv22 (and related int22h rearrangements) since discovery in 1993. The sequence- Southern blot, long distance-PCR and inverse shifting-PCR-for Inv22 genotyping is an interesting example of scientific ingenuity and evolution in order to resolve challenging molecular diagnostic problems.


Subject(s)
Factor VIII/genetics , Hemophilia A/genetics , Blotting, Southern , DNA/analysis , Gene Rearrangement , Genotype , Hemophilia A/diagnosis , Hemophilia A/pathology , Humans , Polymerase Chain Reaction , Sequence Inversion
5.
Mol Cell Endocrinol ; 534: 111359, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34119605

ABSTRACT

Thyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism. In the present work, we report a detailed population and bioinformatic prediction analyses of the TG variants indexed in the Genome Aggregation Database (gnomAD). The results showed a clear predominance of nonsense variants in the European (Finnish), European (Non-Finnish) and Ashkenazi Jewish ethnic groups, whereas the splice site variants predominate in South Asian and African/African-American populations. In total, 282 novel TG variants were described (47 missense involving the wild-type cysteine residues, 177 missense located in the ChEL domain and 58 splice site variants) which were not reported in the literature and that would have deleterious effects in prediction programs. In the gnomAD population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:320. In conclusion, we provide an updated and curated reference source for the diagnosis of thyroid disease, mainly to congenital hypothyroidism due to TG deficiency. The identification and characterization of TG variants is undoubtedly a valuable approach to study the TG structure/function relations and an important tool for clinical diagnosis and genetic counseling.


Subject(s)
Computational Biology/methods , Congenital Hypothyroidism/genetics , Ethnicity/genetics , Genetic Variation , Thyroglobulin/genetics , Algorithms , Alternative Splicing , Codon, Nonsense , Data Curation , Databases, Genetic , Humans , Mutation, Missense , Protein Domains , Thyroglobulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL