Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23823723

ABSTRACT

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Subject(s)
Genetic Variation , Hominidae/genetics , Africa , Animals , Animals, Wild/genetics , Animals, Zoo/genetics , Asia, Southeastern , Evolution, Molecular , Gene Flow/genetics , Genetics, Population , Genome/genetics , Gorilla gorilla/classification , Gorilla gorilla/genetics , Hominidae/classification , Humans , Inbreeding , Pan paniscus/classification , Pan paniscus/genetics , Pan troglodytes/classification , Pan troglodytes/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Population Density
2.
BMC Genomics ; 14: 363, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23721540

ABSTRACT

BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Subject(s)
Genomics , Gorilla gorilla/genetics , High-Throughput Nucleotide Sequencing , Inbreeding , Amino Acid Sequence , Animals , Female , Heterozygote , Male , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Microsatellite Repeats/genetics , Molecular Sequence Data , Mutation , Sequence Analysis, DNA
3.
PLoS One ; 11(4): e0154194, 2016.
Article in English | MEDLINE | ID: mdl-27105073

ABSTRACT

microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Genetic Variation , Hominidae/genetics , MicroRNAs/genetics , Animals , Base Sequence , Cell Line, Tumor , Cluster Analysis , Evolution, Molecular , Gene Regulatory Networks , Gorilla gorilla/genetics , Humans , MicroRNAs/chemistry , MicroRNAs/classification , Nucleic Acid Conformation , Pan paniscus/genetics , Pan troglodytes/genetics , Pongo/genetics , Principal Component Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL