Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Immunity ; 51(3): 508-521.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31471109

ABSTRACT

Recent experimental data and clinical, genetic, and transcriptome evidence from patients converge to suggest a key role of interleukin-1ß (IL-1ß) in the pathogenesis of Kawasaki disease (KD). However, the molecular mechanisms involved in the development of cardiovascular lesions during KD vasculitis are still unknown. Here, we investigated intestinal barrier function in KD vasculitis and observed evidence of intestinal permeability and elevated circulating secretory immunoglobulin A (sIgA) in KD patients, as well as elevated sIgA and IgA deposition in vascular tissues in a mouse model of KD vasculitis. Targeting intestinal permeability corrected gut permeability, prevented IgA deposition and ameliorated cardiovascular pathology in the mouse model. Using genetic and pharmacologic inhibition of IL-1ß signaling, we demonstrate that IL-1ß lies upstream of disrupted intestinal barrier function, subsequent IgA vasculitis development, and cardiac inflammation. Targeting mucosal barrier dysfunction and the IL-1ß pathway may also be applicable to other IgA-related diseases, including IgA vasculitis and IgA nephropathy.


Subject(s)
Cardiovascular Diseases/immunology , Immunoglobulin A/immunology , Inflammation/immunology , Intestines/immunology , Animals , Disease Models, Animal , Humans , Interleukin-1beta/immunology , Mice , Mice, Inbred C57BL , Mucocutaneous Lymph Node Syndrome/immunology , Permeability , Signal Transduction/immunology , Vasculitis/immunology
2.
JACC Basic Transl Sci ; 5(6): 582-598, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32613145

ABSTRACT

In the Ldlr -/- mouse model of atherosclerosis, female Nlrp3 -/- bone marrow chimera and Nlrp3 -/- mice developed significantly smaller lesions in the aortic sinus and decreased lipid content in aorta en face, but a similar protection was not observed in males. Ovariectomized female mice lost protection from atherosclerosis in the setting of NLRP3 deficiency, whereas atherosclerosis showed a greater dependency on NLRP3 in castrated males. Thus, castration increased the dependency of atherosclerosis on the NLRP3 inflammasome, suggesting that testosterone may block inflammation in atherogenesis. Conversely, ovariectomy reduced the dependency on NLRP3 inflammasome components for atherogenesis, suggesting that estrogen may promote inflammasome-mediated atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL