Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Virology ; 435(2): 472-84, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-23141719

ABSTRACT

Components of cytoplasmic processing bodies (P-bodies) and stress granules can be subverted during viral infections to modulate viral gene expression. Because hepatitis C virus (HCV) RNA abundance is regulated by P-body components such as microRNA miR-122, Argonaute 2 and RNA helicase RCK/p54, we examined whether HCV infection modulates P-bodies and stress granules during viral infection. It was discovered that HCV infection decreased the number of P-bodies, but induced the formation of stress granules. Immunofluorescence studies revealed that a number of P-body and stress granule proteins co-localized with viral core protein at lipid droplets, the sites for viral RNA packaging. Depletion of selected P-body proteins decreased overall HCV RNA and virion abundance. Depletion of stress granule proteins also decreased overall HCV RNA abundance, but surprisingly enhanced the accumulation of infectious, extracellular virus. These data argue that HCV subverts P-body and stress granule components to aid in viral gene expression at particular sites in the cytoplasm.


Subject(s)
Cytoplasmic Granules/metabolism , Gene Expression Regulation, Viral , Hepacivirus/physiology , RNA, Viral/metabolism , Virus Release/physiology , Cell Line, Tumor , Hepacivirus/genetics , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Hepatocytes/virology , Humans , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly
2.
Cell Host Microbe ; 9(1): 5-7, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21238942

ABSTRACT

Picornaviruses have evolved elaborate strategies to subvert host translation. In this issue of Cell Host and Microbe, Ho et al. (2011) report that enterovirus infection induces the synthesis of a transcription factor that enhances the synthesis of microRNA-141, which suppresses translation of the cap-binding protein, eIF4E, mRNA to inhibit cap-dependent translation.

3.
Virology ; 379(1): 30-7, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18657840

ABSTRACT

Hepatitis B virus synthesizes multiple spliced RNAs that can be reverse transcribed into viral DNA. We thoroughly characterized the contribution of spliced RNAs to DNA synthesis in transfected cultures of Huh7 and HepG2 cells. We found that up to 50% of DNA within intracellular capsids is derived from five spliced RNAs. Expressing HBV P protein and pgRNA from separate plasmids and the use of the CMV-IE promoter contributes to these high levels of encapsidated DNA derived from spliced RNA. A spliced RNA called Sp1 was the predominant species expressed in both cell lines. All spliced RNAs support the synthesis minus-strand DNA and duplex linear DNA. Only one of the spliced RNAs, Sp14, supported the synthesis of relaxed circular DNA because splicing removed an important cis-acting sequence (hM) in the other four RNAs. Additionally, we created a variant that was deficient in the synthesis of spliced RNA and supported DNA synthesis at wild-type levels. Our results reinforce and extend the idea that a significant fraction of HBV DNA synthesized under common experimental conditions is derived from spliced RNA. It is important that their presence be considered when analyzing HBV DNA replication in transfected cell cultures.


Subject(s)
DNA, Viral/biosynthesis , Hepatitis B virus/physiology , Liver/virology , RNA, Viral/metabolism , Cell Line , DNA/biosynthesis , DNA, Circular/biosynthesis , Humans , RNA Splicing
4.
J Virol ; 81(21): 11577-84, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17699570

ABSTRACT

Previous analysis of hepatitis B virus (HBV) indicated base pairing between two cis-acting sequences, the 5' half of the upper stem of epsilon and phi, contributes to the synthesis of minus-strand DNA. Our goal was to identify other cis-acting sequences on the pregenomic RNA (pgRNA) involved in the synthesis of minus-strand DNA. We found that large portions of the pgRNA could be deleted or substituted without an appreciable decrease in the level of minus-strand DNA synthesized, indicating that most of the pgRNA is dispensable and that a specific size of the pgRNA is not required for this process. Our results indicated that the cis-acting sequences for the synthesis of minus-strand DNA are present near the 5' and 3' ends of the pgRNA. In addition, we found that the first-strand template switch could be directed to a new location when a 72-nucleotide (nt) fragment, which contained the cis-acting sequences present near the 3' end of the pgRNA, was introduced at that location. Within this 72-nt region, we uncovered two new cis-acting sequences, which flank the acceptor site. We show that one of these sequences, named omega and located 3' of the acceptor site, base pairs with phi to contribute to the synthesis of minus-strand DNA. Thus, base pairing between three cis-acting elements (5' half of the upper stem of epsilon, phi, and omega) are necessary for the synthesis of HBV minus-strand DNA. We propose that this topology of pgRNA facilitates first-strand template switch and/or the initiation of synthesis of minus-strand DNA.


Subject(s)
Genome, Viral , Hepatitis B virus/genetics , Nucleic Acid Conformation , RNA, Viral/genetics , Virus Replication , Base Sequence , Cell Line, Tumor , Cloning, Molecular , Cytoplasm/metabolism , DNA Primers/chemistry , DNA, Viral/genetics , Gene Deletion , Humans , Models, Genetic , Molecular Sequence Data
5.
J Virol ; 80(9): 4380-7, 2006 May.
Article in English | MEDLINE | ID: mdl-16611897

ABSTRACT

Synthesis of minus-strand DNA of human hepatitis B virus (HBV) can be divided into three phases: initiation of DNA synthesis, the template switch, and elongation of minus-strand DNA. Although much is known about minus-strand DNA synthesis, the mechanism(s) by which this occurs has not been completely elucidated. Through a deletion analysis, we have identified a cis-acting element involved in minus-strand DNA synthesis that lies within a 27-nucleotide region between DR2 and the 3' copy of DR1. A subset of this region (termed Phi) has been hypothesized to base pair with the 5' half of epsilon (H. Tang and A. McLachlan, Virology, 303:199-210, 2002). To test the proposed model, we used a genetic approach in which multiple sets of variants that disrupted and then restored putative base pairing between the 5' half of epsilon and phi were analyzed. Primer extension analysis, using two primers simultaneously, was performed to measure encapsidated pregenomic RNA (pgRNA) and minus-strand DNA synthesized in cell culture. The efficiency of minus-strand DNA synthesis was defined as the amount of minus-strand DNA synthesized per encapsidation event. Our results indicate that base pairing between phi and the 5' half of epsilon contributes to efficient minus-strand DNA synthesis. Additional results are consistent with the idea that the primary sequence of phi and/or epsilon also contributes to function. How base pairing between phi and epsilon contributes to minus-strand DNA synthesis is not known, but a simple speculation is that phi base pairs with the 5' half of epsilon to juxtapose the donor and acceptor sites to facilitate the first-strand template switch.


Subject(s)
Base Pairing , DNA, Viral/biosynthesis , DNA, Viral/chemistry , Hepatitis B virus/genetics , Base Sequence , Cell Line, Tumor , DNA, Viral/genetics , Gene Deletion , Hepatitis B virus/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL