Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Microorganisms ; 12(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39203521

ABSTRACT

Plasmodium vivax causes the largest malaria burden in Brazil, and chloroquine resistance poses a challenge to eliminating malaria by 2035. Illegal mining in the Roraima Yanomami Indigenous territory can lead to the introduction of resistant parasites. This study aimed to investigate mutations in the pvcrt-o and pvmdr-1 genes to determine their potential as predictors of P. vivax chloroquine-resistant phenotypes. Samples were collected in two health centers of Boa Vista. A questionnaire was completed, and blood was drawn from each patient. Then, DNA extraction, PCR, amplicon purification, and DNA sequencing were performed. After alignment with the Sal-1, the amplified fragment was analyzed. Patients infected with the mutant parasites were queried in the Surveillance Information System. Among the patients, 98% (157/164) of participants were from illegal mining areas. The pvcrt-o was sequenced in 151 samples, and the K10 insertion was identified in 13% of them. The pvmdr1 was sequenced in 80 samples, and the MYF haplotype (958M) was detected in 92% of them and the TYF was detected in 8%, while the MYL was absent. No cases of recrudescence, hospitalization, or death were found. Mutations in the pvcrt-o and pvmdr-1 genes have no potential to predict chloroquine resistance in P. vivax.

2.
Biomedicines ; 12(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255246

ABSTRACT

(1) Background: Malaria remains a significant global public health issue. Since parasites quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine (CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods: A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence of CQ resistance were studied through polymerase chain reaction for gene amplification followed by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and 3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential for association with the phenotype of CQ resistance.

4.
PLoS One ; 15(11): e0241426, 2020.
Article in English | MEDLINE | ID: mdl-33166298

ABSTRACT

Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium species. Knowledge about their genetic diversity can help predict vaccine efficacy and the spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 isolates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a variable number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes (168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype network revealed similar distances among the BA and AF regions. The linkage disequilibrium indicates that recombination does not seem to be acting in diversity, reinforcing natural selection's role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism frequencies could be indicators of balancing selection. Although malaria in BA and AF have distinct vector species and different host immune pressures, consistent genetic signature was found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and the Th3R epitope remained conserved in all studied regions. We conclude that, although the uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.


Subject(s)
Genetic Variation , Parasites/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Selection, Genetic , Amino Acid Sequence , Amino Acid Substitution , Animals , Atlantic Ocean , Brazil , Codon/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Geography , Haplotypes/genetics , INDEL Mutation/genetics , Linkage Disequilibrium/genetics , Nucleotides/genetics , Peptides/chemistry , Phylogeny , Plasmodium vivax/isolation & purification , Polymorphism, Genetic , Protozoan Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL