Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893580

ABSTRACT

In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.

2.
RSC Adv ; 11(53): 33781-33787, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-35497551

ABSTRACT

Based on density functional theory and the crystal structure prediction methods, USPEX and AIRSS, stable intermediate compounds in the Ni-X (X = B, C, and N) systems and their structures were determined in the pressure range of 0-400 GPa. It was found that in the Ni-B system, in addition to the known ambient-pressure phases, the new nickel boride, Ni2B3-Immm, stabilizes above 202 GPa. In the Ni-C system, Ni3C-Pnma was shown to be the only stable nickel carbide which stabilizes above 53 GPa. In the Ni-N system, four new phases, Ni6N-R3̄, Ni3N-Cmcm, Ni7N3-Pbca, and NiN2-Pa3̄, were predicted. For the new predicted phases enriched by a light-element, Ni2B3-Immm and NiN2-Pa3̄, mechanical and electronic properties have been studied.

SELECTION OF CITATIONS
SEARCH DETAIL