Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893580

ABSTRACT

In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.

2.
Membranes (Basel) ; 13(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37505025

ABSTRACT

Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays.

3.
Membranes (Basel) ; 13(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37233556

ABSTRACT

This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions.

4.
RSC Adv ; 11(53): 33781-33787, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-35497551

ABSTRACT

Based on density functional theory and the crystal structure prediction methods, USPEX and AIRSS, stable intermediate compounds in the Ni-X (X = B, C, and N) systems and their structures were determined in the pressure range of 0-400 GPa. It was found that in the Ni-B system, in addition to the known ambient-pressure phases, the new nickel boride, Ni2B3-Immm, stabilizes above 202 GPa. In the Ni-C system, Ni3C-Pnma was shown to be the only stable nickel carbide which stabilizes above 53 GPa. In the Ni-N system, four new phases, Ni6N-R3̄, Ni3N-Cmcm, Ni7N3-Pbca, and NiN2-Pa3̄, were predicted. For the new predicted phases enriched by a light-element, Ni2B3-Immm and NiN2-Pa3̄, mechanical and electronic properties have been studied.

SELECTION OF CITATIONS
SEARCH DETAIL