Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38866385

ABSTRACT

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Subject(s)
Antineoplastic Agents , cdc42 GTP-Binding Protein , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Mice , cdc42 GTP-Binding Protein/antagonists & inhibitors , cdc42 GTP-Binding Protein/metabolism , Cell Line, Tumor , Drug Discovery , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Pyrimidines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Female
2.
J Med Chem ; 66(8): 5981-6001, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37026468

ABSTRACT

CDC42 GTPases (RHOJ, CDC42, and RHOQ) are overexpressed in multiple tumor types and activate pathways critical for tumor growth, angiogenesis, and metastasis. Recently, we reported the discovery of a novel lead compound, ARN22089, which blocks the interaction of CDC42 GTPases with specific downstream effectors. ARN22089 blocks tumor growth in BRAF mutant mouse melanoma models and patient-derived xenografts (PDXs) in vivo. ARN22089 also inhibits tumor angiogenesis in three-dimensional vascularized microtumor models in vitro. Notably, ARN22089 belongs to a novel class of trisubstituted pyrimidines. Based on these results, we describe an extensive structure-activity relationship of ∼30 compounds centered on ARN22089. We discovered and optimized two novel inhibitors (27, ARN25062, and 28, ARN24928), which are optimal back-up/follow-up leads with favorable drug-like properties and in vivo efficacy in PDX tumors. These findings further demonstrate the potential of this class of CDC42/RHOJ inhibitors for cancer treatment, with lead candidates ready for advanced preclinical studies.


Subject(s)
Neoplasms , rho GTP-Binding Proteins , Animals , Humans , Mice , Cell Line, Tumor , Neovascularization, Pathologic , p21-Activated Kinases/metabolism , Protein Binding
3.
Cell Rep ; 39(1): 110641, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385746

ABSTRACT

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Subject(s)
Endothelial Cells , Neoplasms , Animals , Endothelial Cells/metabolism , Humans , Mice , Neoplasms/drug therapy , Neovascularization, Pathologic , Signal Transduction , Tumor Microenvironment , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL