ABSTRACT
BACKGROUND: Tumor-specific mutated proteins can create immunogenic non-self, mutation-containing 'neoepitopes' that are attractive targets for adoptive T-cell therapies. To avoid the complexity of defining patient-specific, private neoepitopes, there has been major interest in targeting common shared mutations in driver genes using off-the-shelf T-cell receptors (TCRs) engineered into autologous lymphocytes. However, identifying the precise naturally processed neoepitopes to pursue is a complex and challenging process. One method to definitively demonstrate whether an epitope is presented at the cell surface is to elute peptides bound to a specific major histocompatibility complex (MHC) allele and analyze them by mass spectrometry (MS). These MS data can then be prospectively applied to isolate TCRs specific to the neoepitope. METHODS: We created mono-allelic cell lines expressing one class I HLA allele and one common mutated oncogene in order to eliminate HLA deconvolution requirements and increase the signal of recovered peptides. MHC-bound peptides on the surface of these cell lines were immunoprecipitated, purified, and analyzed using liquid chromatography-tandem mass spectrometry, producing a list of mutation-containing minimal epitopes. To validate the immunogenicity of these neoepitopes, HLA-transgenic mice were vaccinated using the minimal peptides identified by MS in order to generate neoepitope-reactive TCRs. Specificity of these candidate TCRs was confirmed by peptide titration and recognition of transduced targets. RESULTS: We identified precise neoepitopes derived from mutated isoforms of KRAS, EGFR, BRAF, and PIK3CA presented by HLA-A*03:01 and/or HLA-A*11:01 across multiple biological replicates. From our MS data, we were able to successfully isolate murine TCRs that specifically recognize four HLA-A*11:01 restricted neoepitopes (KRAS G13D, PIK3CA E545K, EGFR L858R and BRAF V600E) and three HLA-A*03:01 restricted neoepitopes (KRAS G12V, EGFR L858R and BRAF V600E). CONCLUSIONS: Our data show that an MS approach can be used to demonstrate which shared oncogene-derived neoepitopes are processed and presented by common HLA alleles, and those MS data can rapidly be used to develop TCRs against these common tumor-specific antigens. Although further characterization of these neoepitope-specific murine TCRs is required, ultimately, they have the potential to be used clinically for adoptive cell therapy.
Subject(s)
Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Mice , Animals , Proto-Oncogene Proteins p21(ras) , Antigens, Neoplasm , Histocompatibility Antigens , Receptors, Antigen, T-Cell/genetics , Peptides , Epitopes , Neoplasm Proteins , HLA-A Antigens , ErbB ReceptorsABSTRACT
DNA binding domains (DBDs) have been used with great success to impart targeting capabilities to a variety of proteins creating highly useful genomic tools. We evaluated the ability of five types of DBDs and strategies (AAV Rep proteins, Cre, TAL effectors, zinc finger proteins, and Cas9/gRNA system) to target the L1 ORF2 protein to drive retrotransposition of Alu inserts to specific sequences in the human genome. First, we find that the L1 ORF2 protein tolerates the addition of protein domains both at the amino- and carboxy-terminus. Although in some instances retrotransposition efficiencies slightly diminished, all fusion proteins containing an intact ORF2 were capable of driving retrotransposition. Second, the stability of individual ORF2 fusion proteins varies and difficult to predict. Third, DBDs that require the formation of multimers for target recognition are unlikely to modify targeting of ORF2p-driven insertions. Fourth, the more components needed to assemble into a complex to drive targeted retrotransposition, the less likely the strategy will increase targeted insertions. Fifth, abundance of target sequences present in the genome will likely dictate the effectiveness and efficiency of targeted insertions. Lastly, the cleavage capabilities of Cas9 (or a Cas9 nickase variant) are unable to substitute for the L1 ORF2 endonuclease domain functions, suggestive that the endonuclease domain has alternate functions needed for retrotransposition. From these studies, we conclude that the most critical component for the modification of the human L1 ORF2 protein to drive targeted insertions is the selection of the DBD due to the varying functional requirements and impacts on protein stability.
Subject(s)
DNA-Binding Proteins/chemistry , Endonucleases/chemistry , Endonucleases/genetics , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , HeLa Cells , Humans , Mutagenesis, Insertional , Protein Domains , RetroelementsABSTRACT
Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.