Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 175(3): 679-694.e22, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340040

ABSTRACT

Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.


Subject(s)
Carcinoma, Hepatocellular/etiology , Cholestasis/complications , Dietary Fiber/metabolism , Dysbiosis/complications , Fermentation , Gastrointestinal Microbiome , Liver Neoplasms/etiology , Animals , Carcinoma, Hepatocellular/microbiology , Cell Line, Tumor , Cholestasis/microbiology , Diet, High-Fat/adverse effects , Dysbiosis/microbiology , Inulin/adverse effects , Liver Neoplasms/microbiology , Male , Mice , Mice, Inbred C57BL
2.
Am J Pathol ; 186(4): 912-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26968114

ABSTRACT

Green tea-derived polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been extensively studied for its antioxidant and anti-inflammatory properties in models of inflammatory bowel disease, yet the underlying molecular mechanism is not completely understood. Herein, we demonstrate that EGCG can potently inhibit the proinflammatory enzyme myeloperoxidase in vitro in a dose-dependent manner over a range of physiologic temperatures and pH values. The ability of EGCG to mediate its inhibitory activity is counter-regulated by the presence of iron and lipocalin 2. Spectral analysis indicated that EGCG prevents the peroxidase-catalyzed reaction by reverting the reactive peroxidase heme (compound I:oxoiron) back to its native inactive ferric state, possibly via the exchange of electrons. Further, administration of EGCG to dextran sodium sulfate-induced colitic mice significantly reduced the colonic myeloperoxidase activity and alleviated proinflammatory mediators associated with gut inflammation. However, the efficacy of EGCG against gut inflammation is diminished when orally coadministered with iron. These findings indicate that the ability of EGCG to inhibit myeloperoxidase activity is one of the mechanisms by which it exerts mucoprotective effects and that counter-regulatory factors such as dietary iron and luminal lipocalin 2 should be taken into consideration for optimizing clinical management strategies for inflammatory bowel disease with the use of EGCG treatment.


Subject(s)
Acute-Phase Proteins/metabolism , Catechin/analogs & derivatives , Inflammation/metabolism , Iron, Dietary/metabolism , Lipocalins/metabolism , Oncogene Proteins/metabolism , Peroxidase/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Antioxidants/metabolism , Catechin/metabolism , Dextran Sulfate/metabolism , Disease Models, Animal , Humans , Lipocalin-2 , Mice, Inbred C57BL , Tea
3.
Biomaterials ; 311: 122668, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38908232

ABSTRACT

Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.

4.
J Immunol Methods ; 454: 40-47, 2018 03.
Article in English | MEDLINE | ID: mdl-29278684

ABSTRACT

The mucosal tissues of the gut and female reproductive tract (FRT) are susceptible to pathogen infections including bacteria, viruses, and parasites, and are also the targets for immune disorders such as Crohn's disease, inflammatory bowel disease (IBD), and many types of cancers. However, the role of the mucosal immune cells to control these diseases is largely unknown. The limited availability of human mucosal biopsy tissue and the low number of cells that can be isolated from these tissues hampers the characterization of the phenotype and function of human mucosal immune cell subsets. Therefore, human-immune-system humanized mice are surrogate models to investigate the human mucosal immune cell responses during the course of the disease. The current protocols used to harvest the immune cells from the mucosal tissues, however, result in low recovery of cells with poor viability. We have established a novel protocol, which results in a high yield of human lymphocytes with high viability to overcome this issue. The immune cells obtained from a single DRAG mouse by our protocol were sufficient for conducting functional assays and for flow cytometry analyses including phenotypic, exhaustion, and functional panels.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Genitalia, Female/cytology , Intestines/cytology , Lymphocytes/cytology , Animals , Cell Survival , Cells, Cultured , Female , HLA-DR4 Antigen/genetics , Homeodomain Proteins/genetics , Humans , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, Transgenic
5.
Front Immunol ; 9: 816, 2018.
Article in English | MEDLINE | ID: mdl-29760694

ABSTRACT

Scrub typhus is caused by Orientia tsutsugamushi, an obligated intracellular bacterium that affects over one million people per year. Several mouse models have been used to study its pathogenesis, disease immunology, and for testing vaccine candidates. However, due to the intrinsic differences between the immune systems in mouse and human, these mouse models could not faithfully mimic the pathology and immunological responses developed by human patients, limiting their value in both basic and translational studies. In this study, we have tested for the first time, a new humanized mouse model through footpad inoculation of O. tsutsugamushi in DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL2RγcKO.NOD) mice with their human immune system reconstituted by infusion of HLA-matched human hematopoietic stem cells from umbilical cord blood. Upon infection, Orientia disseminated into various organs of DRAGA mice resulted in lethality in a dose-dependent manner, while all C3H/HeJ mice infected by the same route survived. Tissue-specific lesions associated with inflammation and/or necroses were observed in multiple organs of infected DRAGA mice. Consistent with the intracellular nature of Orientia, strong Th1, but subdued Th2 responses were elicited as reflected by the human cytokine profiles in sera from infected mice. Interestingly, the percentage of both activated and regulatory (CD4+FOXP3+) human T cells were elevated in spleen tissues of infected mice. After immunization with irradiated whole cell Orientia, humanized DRAGA mice showed a significant activation of human T cells as evidenced by increased number of human CD4+ and CD8+ T cells. Specific human IgM and IgG antibodies were developed after repetitive immunization. The humanized DRAGA mouse model represents a new pre-clinical model for studying Orientia-human interactions and also for testing vaccines and novel therapeutics for scrub typhus.


Subject(s)
Disease Models, Animal , Orientia tsutsugamushi , Scrub Typhus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cytokines/blood , HLA-A2 Antigen/genetics , HLA-DR Antigens/genetics , Humans , Immunization , Immunoglobulin G/blood , Immunoglobulin M/blood , Inflammation , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, Inbred C3H , Mice, Inbred NOD , Mice, Transgenic , Spleen/immunology , Th1 Cells/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL