Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Allergy ; 78(2): 522-536, 2023 02.
Article in English | MEDLINE | ID: mdl-35899482

ABSTRACT

BACKGROUND: Emerging research suggests that local lymphatic tissue such as tonsils have important role in regulating the immune responses. However, allergen sensitization-induced alterations in transcriptome of tonsils are not known. OBJECTIVES: To examine the key differences in tonsillar gene expression between atopic and non-atopic subjects and further by type of sensitization. METHODS: RNA-sequencing was performed on 52 tonsillar samples from atopic and non-atopic tonsillectomy patients. Sensitization to common food- and aero-allergen was defined by allergen specific IgE. Following groups were studied: (1) aero- and food-allergen sensitized (AS+FS) versus non-sensitized (NS), (2) aeroallergen-sensitized (AS) versus food-allergen sensitized (FS), (3) AS versus NS, (4) FS versus NS. Bioinformatics analysis was done using DESeq2(v3.10.2), WGCNA and GATK pipeline in R software (v3.3.1). Protein-protein interaction network was made from String database. RESULTS: We studied 13 aeroallergen-sensitized, 6 food-allergen sensitized, 4 both food-and aero-allergen-sensitized and 29 non-sensitized tonsillectomy patients. Overall, 697 unique differentially expressed genes (DEGs) were detected in all sensitized subgroups including chemokines (CXCL2, CXCL8, CXCL10, CXCL11), IL-20RA, MUC1 and MUC20. When comparing different groups, the gene expression profiles overlapped except the AS versus FS group comparison, suggesting significantly different gene expression between the two sensitization subgroups. Furthermore, aeroallergen-sensitized subjects had more prominent immune responses compared with non-sensitized and food-allergen sensitized subjects including gene expression for IL-17 pathway and Toll-like receptor signalling pathway. CONCLUSION: Allergic sensitization is associated with extensive tonsillar transcriptomic alterations and changes in immune related genes and pathways. Distinct differences were found between aero-allergen and food-allergen sensitization.


Subject(s)
Food Hypersensitivity , Hypersensitivity, Immediate , Humans , Palatine Tonsil , Allergens , Chemokines
2.
Mol Ecol ; 30(12): 2724-2737, 2021 06.
Article in English | MEDLINE | ID: mdl-33219570

ABSTRACT

Gene transcription variation is known to contribute to disease susceptibility and adaptation, but we currently know very little about how contemporary natural selection shapes transcript abundance. Here, we propose a novel analytical framework to quantify the strength and form of ongoing natural selection at the transcriptome level in a wild vertebrate. We estimated selection on transcript abundance in a cohort of a wild salmonid fish (Salmo trutta) affected by an extracellular myxozoan parasite (Tetracapsuloides bryosalmonae) through mark-recapture field sampling and the integration of RNA-sequencing with classical regression-based selection analysis. We show, based on fin transcriptomes of the host, that infection by the parasite and subsequent host survival is linked to upregulation of mitotic cell cycle process. We also detect a widespread signal of disruptive selection on transcripts linked to host immune defence, host-pathogen interactions, cellular repair and maintenance. Our results provide insights into how selection can be measured at the transcriptome level to dissect the molecular mechanisms of contemporary evolution driven by climate change and emerging anthropogenic threats. We anticipate that the approach described here will enable critical information on the molecular processes and targets of natural selection to be obtained in real time.


Subject(s)
Fish Diseases , Kidney Diseases , Myxozoa , Animals , Selection, Genetic , Trout
3.
Parasitology ; 148(6): 726-739, 2021 05.
Article in English | MEDLINE | ID: mdl-33478602

ABSTRACT

The myxozoan Tetracapsuloides bryosalmonae is a widely spread endoparasite that causes proliferative kidney disease (PKD) in salmonid fish. We developed an in silico pipeline to separate transcripts of T. bryosalmonae from the kidney tissue of its natural vertebrate host, brown trout (Salmo trutta). After stringent filtering, we constructed a partial transcriptome assembly T. bryosalmonae, comprising 3427 transcripts. Based on homology-restricted searches of the assembled parasite transcriptome and Atlantic salmon (Salmo salar) proteome, we identified four protein targets (Endoglycoceramidase, Legumain-like protease, Carbonic anhydrase 2, Pancreatic lipase-related protein 2) for the development of anti-parasitic drugs against T. bryosalmonae. Earlier work of these proteins on parasitic protists and helminths suggests that the identified anti-parasitic drug targets represent promising chemotherapeutic candidates also against T. bryosalmonae, and strengthen the view that the known inhibitors can be effective in evolutionarily distant organisms. In addition, we identified differentially expressed T. bryosalmonae genes between moderately and severely infected fish, indicating an increased abundance of T. bryosalmonae sporogonic stages in fish with low parasite load. In conclusion, this study paves the way for future genomic research in T. bryosalmonae and represents an important step towards the development of effective drugs against PKD.


Subject(s)
Fish Diseases/parasitology , Kidney Diseases/veterinary , Myxozoa/drug effects , Parasitic Diseases, Animal/parasitology , Salmo salar/parasitology , Trout/parasitology , Animals , Fish Diseases/drug therapy , Kidney/parasitology , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/parasitology , Myxozoa/genetics , Myxozoa/pathogenicity , Parasitic Diseases, Animal/drug therapy , RNA/chemistry , RNA/isolation & purification , Sequence Analysis, RNA , Transcriptome
4.
Heredity (Edinb) ; 122(6): 800-808, 2019 06.
Article in English | MEDLINE | ID: mdl-30631147

ABSTRACT

The evolution of complex traits is often shaped by adaptive divergence. However, very little is known about the number, effect size, and location of the genomic regions influencing the variation of these traits in natural populations. Based on a dense linkage map of the common frog, Rana temporaria, we have localized, for the first time in amphibians, three significant and nine suggestive quantitative trait loci (QTLs) for metabolic rate, growth rate, development time, and weight at metamorphosis, explaining 5.6-18.9% of the overall phenotypic variation in each trait. We also found a potential pleiotropic QTL between development time and size at metamorphosis that, if confirmed, might underlie the previously reported genetic correlation between these traits. Furthermore, we demonstrate that the genetic variation linked to fitness-related larval traits segregates within Rana temporaria populations. This study provides the first insight into the genomic regions that affect larval life history traits in anurans, providing a valuable resource to delve further into the genomic basis of evolutionary change in amphibians.


Subject(s)
Life History Traits , Quantitative Trait Loci , Rana temporaria/genetics , Animals , Body Size , Chromosome Mapping , Female , Male , Metamorphosis, Biological , Rana temporaria/growth & development
6.
Parasit Vectors ; 13(1): 433, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32859251

ABSTRACT

BACKGROUND: Next generation sequencing (NGS) technologies are extensively used to dissect the molecular mechanisms of host-parasite interactions in human pathogens. However, ecological studies have yet to fully exploit the power of NGS as a rich source for formulating and testing new hypotheses. METHODS: We studied Eurasian perch (Perca fluviatilis) and its eye parasite (Trematoda, Diplostomidae) communities in 14 lakes that differed in humic content in order to explore host-parasite-environment interactions. We hypothesised that high humic content along with low pH would decrease the abundance of the intermediate hosts (gastropods), thus limiting the occurrence of diplostomid parasites in humic lakes. This hypothesis was initially invoked by whole eye RNA-seq data analysis and subsequently tested using PCR-based detection and a novel targeted metabarcoding approach. RESULTS: Whole eye transcriptome results revealed overexpression of immune-related genes and the presence of eye parasite sequences in RNA-seq data obtained from perch living in clear-water lakes. Both PCR-based and targeted-metabarcoding approach showed that perch from humic lakes were completely free from diplostomid parasites, while the prevalence of eye flukes in clear-water lakes that contain low amounts of humic substances was close to 100%, with the majority of NGS reads assigned to Tylodelphys clavata. CONCLUSIONS: High intraspecific diversity of T. clavata indicates that massively parallel sequencing of naturally pooled samples represents an efficient and powerful strategy for shedding light on cryptic diversity of eye parasites. Our results demonstrate that perch populations in clear-water lakes experience contrasting eye parasite pressure compared to those from humic lakes, which is reflected by prevalent differences in the expression of immune-related genes in the eye. This study highlights the utility of NGS to discover novel host-parasite-environment interactions and provide unprecedented power to characterize the molecular diversity of cryptic parasites.


Subject(s)
Lakes/chemistry , Perches/parasitology , Trematoda/isolation & purification , Animals , DNA, Helminth , Eye/parasitology , Fish Diseases/diagnosis , Fish Diseases/parasitology , Host-Parasite Interactions , Humans , Humic Substances , Lakes/parasitology , Polymerase Chain Reaction/methods , RNA-Seq/methods , Snails/parasitology , Trematoda/genetics , Trematode Infections/veterinary
7.
G3 (Bethesda) ; 8(12): 3737-3743, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30355765

ABSTRACT

The Eurasian perch (Perca fluviatilis) is the most common fish of the Percidae family and is widely distributed across Eurasia. Perch is a popular target for professional and recreational fisheries, and a promising freshwater aquaculture species in Europe. However, despite its high ecological, economical and societal importance, the available genomic resources for P. fluviatilis are rather limited. In this work, we report de novo assembly and annotation of the whole genome sequence of perch. The linked-read based technology with 10X Genomics Chromium chemistry and Supernova assembler produced a draft perch genome ∼1.0 Gbp assembly (scaffold N50 = 6.3 Mb; the longest individual scaffold of 29.3 Mb; BUSCO completeness of 88.0%), which included 281.6 Mb of putative repeated sequences. The perch genome assembly presented here, generated from small amount of starting material (0.75 ng) and a single linked-read library, is highly continuous and considerably more complete than the currently available draft of P. fluviatilis genome. A total of 23,397 protein-coding genes were predicted, 23,171 (99%) of which were annotated functionally from either sequence homology or protein signature searches. Linked-read technology enables fast, accurate and cost-effective de novo assembly of large non-model eukaryote genomes. The highly continuous assembly of the Eurasian perch genome presented in this study will be an invaluable resource for a range of genetic, ecological, physiological, ecotoxicological, functional and comparative genomic studies in perch and other fish species of the Percidae family.


Subject(s)
Fish Proteins/genetics , Genome/genetics , Perches/genetics , Animals , High-Throughput Nucleotide Sequencing
8.
G3 (Bethesda) ; 7(2): 637-645, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28040782

ABSTRACT

By combining 7077 SNPs and 61 microsatellites, we present the first linkage map for some of the early diverged lineages of the common frog, Rana temporaria, and the densest linkage map to date for this species. We found high homology with the published linkage maps of the Eastern and Western lineages but with differences in the order of some markers. Homology was also strong with the genome of the Tibetan frog Nanorana parkeri and we found high synteny with the clawed frog Xenopus tropicalis We confirmed marked heterochiasmy between sexes and detected nonrecombining regions in several groups of the male linkage map. Contrary to the expectations set by the male heterogamety of the common frog, we did not find male heterozygosity excess in the chromosome previously shown to be linked to sex determination. Finally, we found blocks of loci showing strong transmission ratio distortion. These distorted genomic regions might be related to genetic incompatibilities between the parental populations, and are promising candidates for further investigation into the genetic basis of speciation and adaptation in the common frog.


Subject(s)
Genome , Rana temporaria/genetics , Recombination, Genetic , Synteny/genetics , Animals , Chromosome Mapping , Cold Temperature , Genetic Linkage , Genetics, Population , Genomics , Genotype , Male , Polymorphism, Single Nucleotide/genetics , Rana temporaria/physiology , Xenopus/genetics , Xenopus/physiology
9.
Mol Ecol Resour ; 15(5): 1145-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25703535

ABSTRACT

Massively parallel sequencing a small proportion of the whole genome at high coverage enables answering a wide range of questions from molecular evolution and evolutionary biology to animal and plant breeding and forensics. In this study, we describe the development of restriction-site associated DNA (RAD) sequencing approach for Ion Torrent PGM platform. Our protocol results in extreme genome complexity reduction using two rare-cutting restriction enzymes and strict size selection of the library allowing sequencing of a relatively small number of genomic fragments with high sequencing depth. We applied this approach to a common freshwater fish species, the Eurasian perch (Perca fluviatilis L.), and generated over 2.2 MB of novel sequence data consisting of ~17,000 contigs, identified 1259 single nucleotide polymorphisms (SNPs). We also estimated genetic differentiation between the DNA pools from freshwater (Lake Peipus) and brackish water (the Baltic Sea) populations and identified SNPs with the strongest signal of differentiation that could be used for robust individual assignment in the future. This work represents an important step towards developing genomic resources and genetic tools for the Eurasian perch. We expect that our ddRAD sequencing protocol for semiconductor sequencing technology will be useful alternative for currently available RAD protocols.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Animals , Genetic Variation , Genetics, Population/methods , Perches/classification , Perches/genetics , Polymorphism, Single Nucleotide
10.
Nat Commun ; 5: 4737, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25189940

ABSTRACT

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.


Subject(s)
Butterflies/genetics , Chromosome Aberrations , Evolution, Molecular , Genome/genetics , Phylogeny , Synteny , Animals , Base Sequence , Chromosome Mapping , Karyotype , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
11.
Bioinformation ; 9(17): 873-8, 2013.
Article in English | MEDLINE | ID: mdl-24250115

ABSTRACT

The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

12.
Bioinformation ; 5(6): 271-6, 2010 Nov 27.
Article in English | MEDLINE | ID: mdl-21364831

ABSTRACT

MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL