Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637784

ABSTRACT

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Subject(s)
Alternaria , Metal Nanoparticles , Quercus , Solanum lycopersicum , Silver/chemistry , Metal Nanoparticles/chemistry , Antifungal Agents , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , X-Ray Diffraction , Anti-Bacterial Agents
2.
BMC Plant Biol ; 24(1): 783, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152388

ABSTRACT

BACKGROUND: Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS: Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS: The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.


Subject(s)
Chromium , Stress, Physiological , Trehalose , Zea mays , Zea mays/drug effects , Zea mays/growth & development , Zea mays/physiology , Zea mays/metabolism , Trehalose/metabolism , Stress, Physiological/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Antioxidants/metabolism
3.
Environ Monit Assess ; 195(11): 1363, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874418

ABSTRACT

Withania coagulans is a valuable medicinal plant with high demand, but its wild growth and local usage pose a threat to its natural habitat. This study aims to understand the plant's growth, anatomy, and physiology in different environmental conditions to aid in conservation and re-vegetation efforts. Fifteen differently adapted populations of Withania coagulans were collected from diverse ecological regions, viz., (i) along the roadside, (ii) hilly areas, (iii) barren land, and (iv) wasteland to unravel the adaptive mechanisms that are responsible for their ecological success across heterogenic environments of Punjab, Pakistan. The roadside populations had high values of photosynthetic pigments, total soluble proteins, root endodermis thickness, stem and leaf cortical thickness, and its cell area. The populations growing in hilly areas showed better growth performance such as vigorous growth and biomass production. Additionally, there was enhanced accumulation of organic osmolytes (glycine betaine and proline), chlorophyll content (chl a/b), and enlarged epidermal cells, cortical cells, vascular bundles, metaxylem vessels, and phloem region in roots. In case of stem area, epidermal thickness, cortical thickness, vascular bundle, and pith area showed improved growth. However, the barren land population showed significant increase in carotenoid contents, vascular bundle area, and metaxylem area in roots, and xylem vessels and phloem area in stems and leaves. The wasteland population surpassed the rest of the populations in having greater root dry weight, higher shoot ionic contents, increased root area, thick cortical, and vascular bundle area in roots. Likewise, cortical thickness and its cell area, and pith area in stems, whereas large vascular bundles, phloem region, and high stomatal density were recorded in leaves. Subsequently, natural populations showed the utmost behavior related to tissue organization and physiology in response to varied environmental conditions that would increase the distribution and survival of species.


Subject(s)
Plants, Medicinal , Withania , Animals , Withania/metabolism , Endangered Species , Environmental Monitoring , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
4.
Physiol Mol Biol Plants ; 29(8): 1205-1224, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37829703

ABSTRACT

Cenchrus ciliaris L. is a perennial grass that can grow in a diverse range of habitats including challenging deserts. The purpose of the study was to investigate the impact of aridity on morpho-anatomical and physiological traits in C. ciliaris populations collected from arid and semi-arid areas of Punjab, Pakistan. The populations growing in extremely arid conditions displayed a range of structural and physiological adaptations. Under extremely dry conditions, root epidermal thickness (90.29 µm), cortical cell area (7677.78 µm2), and metaxylem cell area (11,884.79 µm2) increased while root pith cell area (2681.96 µm2) decreased in tolerant populations. The populations under extremely aridity maximized leaf lamina (184.21 µm) and midrib thickness (316.46 µm). Additionally, highly tolerant populations were characterized by the accumulation of organic osmolytes such as glycinebetaine (132.60 µmol g-1 FW) was increased in QN poulations, proline (118.01 µmol g-1 F.W) was maximum in DF populations, and total amino acids (69.90 mg g-1 FW) under extreme water deficit conditions. In arid conditions, abaxial stomatal density (2630.21 µm) and stomatal area (8 per mm2) were also reduced in DF populations to check water loss through transpiration. These findings suggest that various parameters are crucial for the survival of C. ciliaris in arid environments. The main strategies used by C. ciliaris was intensive sclerification, effective retention of ions, and osmotic adjustment through proline and glycinebetaine under arid conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01351-3.

5.
Bull Environ Contam Toxicol ; 106(5): 805-811, 2021 May.
Article in English | MEDLINE | ID: mdl-33743020

ABSTRACT

The current study was designed to determine the concentrations of toxic metals (Ni, Pb and Cr) in feathers of birds collected from four regions of NE Pakistan. Feather samples of birds (House Crow, Common Myna and House Sparrow) were collected from different areas. Atomic absorption spectrophotometer was used to determine the concentration of metals in feathers. Analysis of the data revealed that concentrations of Pb and Cr were significantly different (p < 0.05) among bird species, whereas no difference (p > 0.05) was detected among bird species (house crow, common myna and house sparrow) for Ni. A significant difference was found for the concentration of Pb and Ni in all the four studied regions. Whereas, non-significant difference was found in all the studied regions for the concentrating of Cr. It was revealed that there is significant rising concentration of metals (Pb, Cr) in feathers of birds in Azad Kashmir.


Subject(s)
Environmental Pollutants , Metals, Heavy , Animals , Biological Monitoring , Birds , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Metals, Heavy/analysis , Pakistan
6.
Physiol Mol Biol Plants ; 27(10): 2345-2355, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744370

ABSTRACT

Carbohydrate metabolism in plants is influenced by thermodynamics. The amount of carbon dioxide (CO2) in the atmosphere is expected to rise in the future. As a result, understanding the effects of higher CO2 on carbohydrate metabolism and heat stress tolerance is necessary for anticipating plant responses to global warming and elevated CO2. In this study, five wheat cultivars were exposed to heat stress (40 °C) at the onset of anthesis for three continuous days. These cultivars were grown at two levels of CO2 i.e. ambient CO2 level (a[CO2], 380 mmol L-1) and elevated CO2 level (e[CO2], 780 mmol L-1), to determine the interactive effect of elevated CO2 and heat stress on carbohydrate metabolism and antioxidant enzyme activity in wheat. Heat stress reduced the photosynthetic rate (Pn) and grain yield in all five cultivars, but cultivars grown in e[CO2] sustained Pn and grain yield in contrast to cultivars grown in a[CO2]. Heat stress reduced the activity of ADP-glucose pyrophosphorylase, UDP-glucose pyrophosphorylase, invertases, Glutathione reductase (GR), Peroxidase (POX), and Superoxide dismutase (SOD) at a[CO2] but increased at e[CO2]. The concentration of sucrose, glucose, and fructose mainly increased in tolerant cultivars under heat stress at e[CO2]. This study confirms the interaction between the heat stress and e[CO2] to mitigate the effect of heat stress on wheat and suggests to have in-depth knowledge and precise understanding of carbohydrate metabolism in heat stressed plants in order to prevent the negative effects of high temperatures on productivity and other physiological attributes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01080-5.

7.
Physiol Mol Biol Plants ; 27(9): 2115-2126, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34629782

ABSTRACT

With the recent developments in the field of nanotechnology, the biosynthesis of nanoparticles has increased tremendously. Silver nanoparticles (SNPs) are among the most synthesized nanoparticles and this extensive synthesis can elevate the amounts of SNPs in the environment, which, consequently, pose a serious threat to the ecosystem and can bring unwanted environmental effects. As plants are an important part of ecosystem, investigation of toxic effects of SNPs on plants is particularly interesting. This study evaluates the potential risk of SNPs interaction with plants. For this, seeds of Vigna radiata L. were screened in presence of SNPs (20 mgL-1) using the germination, growth, and biochemical parameters as a phototoxicity criterion. The 19.57 nm average-sized SNPs were synthesized via the biosynthesis method. These biosynthesized SNPs were then applied on two varieties of V. radiata (Azri and High cross 404) and found to have variety dependent toxic effects on seed germination, growth, and biochemical parameters. Seed germination, root length, shoot length, fresh weight, chlorophyll, carotenoid, sugar content, and total proteins were reduced by 20, 46, 50, 18, 55, 62, 82, and 67%, respectively, in High cross 404, when compared with control (distilled water). The variety Azri was less sensitive than the variety High cross 404. In conclusion, the results demonstrated that SNPs affect seed germination and seedling growth when internalized and accumulated in plants, revealing that SNPs were responsible for the side effects. More in-depth research is required, in the form of different concentrations of SNPs or different plant species, to draw a logical conclusion and develop legislation about the safe use of biosynthesized SNPs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01073-4.

8.
Physiol Mol Biol Plants ; 27(5): 1073-1087, 2021 May.
Article in English | MEDLINE | ID: mdl-34092951

ABSTRACT

The present study involved two pot experiments to investigate the response of mung bean to the individual or combined SO4 2- and selenate application under drought stress. A marked increment in biomass and NPK accumulation was recorded in mung bean seedlings fertilized with various SO4 2- sources, except for CuSO4. Compared to other SO4 2- fertilizers, ZnSO4 application resulted in the highest increase in growth attributes and shoot nutrient content. Further, the combined S and Se application (S + Se) significantly enhanced relative water content (16%), SPAD value (72%), photosynthetic rate (80%) and activities of catalase (79%), guaiacol peroxidase (53%) and superoxide dismutase (58%) in the leaves of water-stressed mung bean plants. Consequently, the grain yield of mung bean was markedly increased by 105% under water stress conditions. Furthermore, S + Se application considerably increased the concentrations of P (47%), K (75%), S (80%), Zn (160%), and Fe (15%) in mung bean seeds under drought stress conditions. These findings indicate that S + Se application potentially increases the nutritional quality of grain legumes by stimulating photosynthetic apparatus and antioxidative machinery under water deficit conditions. Our results could provide the basis for further experiments on cross-talk between S and Se regulatory pathways to improve the nutritional quality of food crops. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00992-6.

10.
Microsc Res Tech ; 87(5): 1031-1043, 2024 May.
Article in English | MEDLINE | ID: mdl-38205658

ABSTRACT

The genus Achyranthes belong to the family Amaranthaceae which constitutes an important group of herbs and shrubs with immense medicinal value. The present research work was conducted to investigate the anticancer potential of Achyranthes aspera L. leaves by focusing on the antioxidant, aniproliferative and antimitotic activities of leaf extracts. Plant extraction was carried out by soxhelt method with different solvents. Phytochemical characterization of the plants extracts using chemical methods identified the presence of cardiac glycosides, saponins, coumarins, proteins, tannins, flavonoids and triterpenes. Alkaloid was present in methanolic and ethanolic extract. High performance liquid chromatography showed presence of different concentration of myricetin, quercetin and kaempferol in different extracts with the highest concentration of myricetin (84.53 µg/mL) in n-butanolic extract. The extracts were then tested for antioxidant activity using 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging assay by spectrophotometric method. In DPPH radical scavenging assay, antioxidant activity of A. aspera ranged between 79.78 ± 0.034% and 58.63 ± 0.069%. Highest antioxidant activity was observed for methanolic extract and lowest for acetone. Antimitotic activity was determined by using Allium cepa assay in which microscopic investigation was carried out to observe normal and abnormal phases of mitosis. In this assay, n-butanolic extract had highest antimitotic activity with minimum mitotic index at 2 mg/mL (57 ± 0.0351%). The plant extracts also caused chromosomal and mitotic aberrations which were clearly observed under 40× and 100× magnification of compound microscope. Antiproliferative activity was determined by using yeast cell model in which light microscope with hemocytometer was used for cell counting. In case of Antiproliferative activity, the ethyl acetate extract of A. aspera had highest antiproliferative activity with lowest cell viability (22.14 ± 0.076%) at highest extract concentration (2 mg/mL) while methanol extract of A. aspera had highest antiproliferative activity with lower cell viability (24.24 ± 0.057%) at lowest extract concentration (0.25 mg/mL). The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent. RESEARCH HIGHLIGHTS: Achyranthes aspera L. leaves have various phytochemicals which contribute to its medicinal properties Various extracts of the leaves of A. aspera L. possess antioxidant, antimitotic and antiproliferative potential The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent.


Subject(s)
Achyranthes , Antimitotic Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Achyranthes/chemistry , Microscopy , Plants , Methanol , Spectrum Analysis , Plant Leaves
11.
Front Pharmacol ; 15: 1328133, 2024.
Article in English | MEDLINE | ID: mdl-38420196

ABSTRACT

Background: Kashmir Himalaya hosts the most diverse and rich flora in the world, which serves as grazing land for millions of small ruminants in the area. While most plant species are beneficial, some can be poisonous, causing economic losses and animal health issues for livestock. Consequently, this study is the first comprehensive report on the traditional phyto-toxicological knowledge in District Muzaffarabad and the assessment of its authenticity through experimental studies in rats. Methods: The data regarding traditional knowledge was gathered from 70 key respondents through semi-structured interviews, which was quantitatively analyzed and authenticated through plant extract testing on Wistar female rats and comparison with published resources. Results: A total of 46 poisonous plant species belonging to 23 families and 38 genera were reported to be poisonous in the study area. Results revealed that leaves were the most toxic plant parts (24 species, 52.1%), followed by the whole plant (18 species, 39.1%), stem (17 species, 36.9%), and seeds (10 species, 21.7%). At the organ level, liver as most susceptible affected by 13 species (28.2%), followed by the gastrointestinal tract (15 species, 32.6%), nervous system (13 species, 8.2%), dermis (8 species, 17.3%), renal (7 species, 15.2%), respiratory (4 species, 8.7%), cardiovascular system (3 species, 6.5%), and reproductive system (2 species, 4.3%). The poisonous plant species with high Relative frequency citation (RFC) and fidelity level (FL) were Nerium oleander (RFC, 0.6; FL, 100), Lantana camara (RFC, 0.6; FL, 100), and Ricinus communis (RFC, 0.6; FL, 100). Experimental assessment of acute toxicity assay in rats revealed that Nerium oleander was the most toxic plant with LD50 of (4,000 mg/kg), trailed by Ricinus communis (4,200 mg/kg), L. camara (4,500 mg/kg), and Datura stramonium (4,700 mg/kg); however, other plants showed moderate to mild toxicity. The major clinical observations were anorexia, piloerection, dyspnea, salivation, tachypnea, constipation, diarrhea, tremor, itchiness, and dullness. Conclusion: This study showed that numerous poisonous plants pose a significant risk to the livestock industry within Himalayan territory, leading to substantial economic losses. Consequently, it is of utmost importance to conduct further comprehensive studies on the phytotoxicity of plants.

12.
Bot Stud ; 65(1): 4, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252177

ABSTRACT

BACKGROUND: Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS: AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 µg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION: The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.

13.
PLoS One ; 19(1): e0291939, 2024.
Article in English | MEDLINE | ID: mdl-38227608

ABSTRACT

Fungal pathogens are one of the major reasons for biotic stress on rice (Oryza sativa L.), causing severe productivity losses every year. Breeding for host resistance is a mainstay of rice disease management, but conventional development of commercial resistant varieties is often slow. In contrast, the development of disease resistance by targeted genome manipulation has the potential to deliver resistant varieties more rapidly. The present study reports the first cloning of a synthetic maize chitinase 1 gene and its insertion in rice cv. (Basmati 385) via Agrobacterium-mediated transformation to confer resistance to the rice blast pathogen, Pyricularia oryzae. Several factors for transformation were optimized; we found that 4-week-old calli and an infection time of 15 minutes with Agrobacterium before colonization on co-cultivation media were the best-suited conditions. Moreover, 300 µM of acetosyringone in co-cultivation media for two days was exceptional in achieving the highest callus transformation frequency. Transgenic lines were analyzed using molecular and functional techniques. Successful integration of the gene into rice lines was confirmed by polymerase chain reaction with primer sets specific to chitinase and hpt genes. Furthermore, real-time PCR analysis of transformants indicated a strong association between transgene expression and elevated levels of resistance to rice blast. Functional validation of the integrated gene was performed by a detached leaf bioassay, which validated the efficacy of chitinase-mediated resistance in all transgenic Basmati 385 plants with variable levels of enhanced resistance against the P. oryzae. We concluded that overexpression of the maize chitinase 1 gene in Basmati 385 improved resistance against the pathogen. These findings will add new options to resistant germplasm resources for disease resistance breeding. The maize chitinase 1 gene demonstrated potential for genetic improvement of rice varieties against biotic stresses in future transformation programs.


Subject(s)
Ascomycota , Chitinases , Oryza , Disease Resistance/genetics , Zea mays/genetics , Zea mays/metabolism , Plant Breeding , Plants, Genetically Modified/metabolism , Agrobacterium/genetics , Cloning, Molecular , Chitinases/genetics , Chitinases/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Plants (Basel) ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256756

ABSTRACT

Multiple abiotic stresses such as drought, salinity, heat, and cold stress prevailing in natural habitats affect plant growth and development. Different species modify their structural and functional traits to combat these abiotic stresses while growing in stressful environments. Cenchrus species, i.e., Cenchrus pennisetiformis, C. setiger, and C. prieurii are widely distributed grasses found growing all over the world. Samples from natural populations were collected from different ecological regions in the Punjab and Khyber Pakhtoonkhwa that were exposed to aridity, salinity, and cold, while one site was designated as normal control. In the present study, structural and functional modifications of three Cenchrus species under abiotic stresses were evaluated. It was expected that each Cenchrus species may evolve different strategies to cope with multiple abiotic stresses. All Cenchrus species responded differently whether growing in normal environment or stressful conditions. The most remarkable feature for survival in C. pennisetiformis under cold stress was increased inflorescence and increased stem and root lignification. C. prieurii showed better tolerance to saline and cold environments. C. setiger showed better development of leaf sheath anatomical traits. The structural and functional modifications in Cenchrus species such as development of mechanical tissues provided structural support, while dermal and parenchymatous tissues increased water storage capacity and minimized water loss. An increase in the concentration of organic osmolytes and ionic content aids turgor pressure maintenance and ionic content crucial for plant growth and development. It was concluded that structural and functional alterations in all Cenchrus species were very specific and critical for survival under different environmental stresses. The ecological fitness of these species relied on maintenance of growth and biomass production, and the development of mechanical, vascular, dermal and parenchyma tissues under stressful environmental conditions. Moreover, accumulation of beneficial ions (K+ and Ca2+) and organic osmolytes were critical in turgor maintenance, hence survival of Cenchrus spp.

15.
PeerJ ; 11: e16609, 2023.
Article in English | MEDLINE | ID: mdl-38107576

ABSTRACT

Parthenium weed poses significant threats to cropping systems, socioeconomic structures, and native ecosystems. The pronounced impact is primarily attributed to its rapid and efficient invasion mechanism. Despite that the detrimental effects of Parthenium weed are widely acknowledged, an in-depth scientific comprehension of its invasion mechanism, particularly regarding modifications in structural and functional attributes under natural conditions, is still lacking. To bridge this knowledge gap and formulate effective strategies for alleviating the adverse consequences of Parthenium weed, a study was conducted in the more cultivated and densely populated areas of Punjab, Pakistan. This study was focused on fifteen distinct populations of the star weed (Parthenium hysterophorus L.) to investigate the factors contributing to its widespread distribution in diverse environmental conditions. The results revealed significant variations in growth performance, physiological traits, and internal structures among populations from different habitats. The populations from wastelands exhibited superior growth, with higher accumulation of soluble proteins (TSP) and chlorophyll content (Chl a&b, TChl, Car, and Chl a/b). These populations displayed increased root and stem area, storage parenchyma, vascular bundle area, metaxylem area, and phloem area. Significant leaf modifications included thicker leaves, sclarification around vascular bundles, and widened metaxylem vessels. Roadside populations possessed larger leaf area, enhanced antioxidant activity, increased thickness of leaves in terms of midrib and lamina, and a higher cortical proportion. Populations found in agricultural fields depicted enhanced shoot biomass production, higher levels of chlorophyll b, and an increased total chlorophyll/carotenoid ratio. Additionally, they exhibited increased phloem area in their roots, stems, and leaves, with a thick epidermis only in the stem. All these outcomes of the study revealed explicit structural and functional modifications among P. hysterophorus populations collected from different habitats. These variations were attributed to the environmental variability and could contribute to the widespread distribution of this species. Notably, these findings hold practical significance for agronomists and ecologists, offering valuable insights for the future management of Parthenium weed in novel environments and contributing to the stability of ecosystems.


Subject(s)
Asteraceae , Parthenium hysterophorus , Ecosystem , Antioxidants/pharmacology , Chlorophyll/pharmacology
16.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37793992

ABSTRACT

This report examines the bio-fabrication of silver nanoparticles (Ag-NPs) utilizing AgNO3 and leaf extract of Crataegus monogyna as the precursor material. In order to maximize the antibacterial efficacy against Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae and Pseudomonas aeruginosa, the reaction conditions for the green fabrication of Ag-NPs were optimized. A one factor at a time approach (volume concentration of extract, volume concentration of AgNO3, pH and temperature) was used to optimize the best condition, and results were assessed through UV-visible spectroscopy and particle size distribution. The results showed that 20 mL of plant extract, 80 mL of AgNO3, pH 08, 100 °C temperature were the optimum reaction conditions under which we obtained the smallest Ag-NPs (7 nm). The scanning electron microscopy and X-ray diffraction analysis confirmed the spherical and crystalline nature of Ag-NPs. The antibacterial activity assay demonstrated a high antibacterial effect of Ag-NPs against S. aureus, P. mirabilis, K. pneumoniae and P. aeruginosa, and that impact was greater with smaller-sized nanoparticles (7 nm). This study shows that leaf extract of C. monogyna is a possible medium for the green fabrication of Ag-NPs, and control over reaction factors can establish the characteristics and antibacterial effectiveness of Ag-NPs.Communicated by Ramaswamy H. Sarma.

17.
Plant Physiol Biochem ; 202: 107935, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37579683

ABSTRACT

Drought is the most critical climatic factor instigating severe threats to crop production worldwide. As stress ameliorants, exogenous sodium nitroprusside (SNP) or spermidine (Spd) supply has positive responses in alleviating the drought adversities in crops, however, reports regarding their combined effects is still elusive. Here, the protective role of SNP and Spd to confer drought resistance in sunflower (Helianthus annuus L.) through up-regulation of physiological and metabolic processes was investigated. Plants were foliar sprayed with individual or combined SNP (100 µM) or Spd (100 µM). Drought was induced by keeping the soil at 100% (normal) and 60% (drought stress) field capacity levels. Drought exposure caused a marked decline in relative water content (RWC), excised leaf water retention (ELWR), net photosynthesis (PN), transpiration rate (E), stomatal conductance (gs), and sub-stomatal conductance (Ci) with substantial increase in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). SNP plus Spd exhibited a considerable increase in CAT, SOD, and POX activities under drought, and helped the plants to retain optimum water status and gas exchange attributes. Similarly, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were increased significantly to drought; however, a notable decline was recorded in drought prone plants treated with exogenous SNP plus Spd. Moreover, addition of SNP plus Spd under drought caused a remarkable increase in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll total (Chl t), carotenoids (Car), and growth traits like shoot length (SL), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW). Combined SNP and Spd application could potentially alleviate the drought-induced damages in sunflower through increased water status (8-10%), antioxidant enzymes (17-28%), chlorophyll pigments (14-21%), and growth performance (12-22%) under drought stress.


Subject(s)
Helianthus , Spermidine , Spermidine/pharmacology , Helianthus/metabolism , Nitroprusside/pharmacology , Drought Resistance , Chlorophyll A , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Water/metabolism , Droughts , Stress, Physiological
18.
Sci Rep ; 13(1): 19580, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37949952

ABSTRACT

The removal of toxic dye pigments from the environment is of utmost importance since even trace amounts of these pollutants can lead to harmful impacts on ecosystems. Heterogeneous photocatalysis is a potential technique for eliminating microbiological, inorganic, and organic pollutants from wastewater. Here, we report the band gap alteration of ZnO by making its composites with CuSe to enhance photocatalytic activity. The purpose is to develop metal oxide nanocomposites (ZnO/CuSe) as an effective and efficient material for the photodegradation of methyl blue. The photocatalysts, ZnO nanorods, CuSe, and ZnO/CuSe nanocomposites of different weight ratios were synthesized by the simple and cost-effective technique of precipitation. UV-Vis spectra verified that the ZnO/CuSe photocatalyst improved absorption in the visible region. The optical bandgap of ZnO/CuSe nanocomposites reduced from 3.37 to 2.68 eV when CuSe concentration increased from 10 to 50%. ZnO/CuSe composites demonstrated better photocatalytic activity than ZnO when exposed to UV-visible light. The pure ZnO nanorods could absorb UV light and the nanocomposites could absorb visible light only; this was attributed to the transfer of excited high-energy electrons from ZnO to CuSe.

19.
Pathogens ; 12(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678480

ABSTRACT

A wide range of novelties and significant developments in the field of veterinary science to treat helminth parasites by using natural plant products have been assessed in recent years. To the best of our knowledge, to date, there has not been such a comprehensive review of 19 years of articles on the anthelmintic potential of plants against various types of helminths in different parts of the world. Therefore, the present study reviews the available information on a large number of medicinal plants and their pharmacological effects, which may facilitate the development of an effective management strategy against helminth parasites. An electronic search in four major databases (PubMed, Scopus, Web of Science, and Google Scholar) was performed for articles published between January 2003 and April 2022. Information about plant species, local name, family, distribution, plant tissue used, and target parasite species was tabulated. All relevant studies meeting the inclusion criteria were assessed, and 118 research articles were included. In total, 259 plant species were reviewed as a potential source of anthelmintic drugs. These plants can be used as a source of natural drugs to treat helminth infections in animals, and their use would potentially reduce economic losses and improve livestock production.

20.
PLoS One ; 18(6): e0286736, 2023.
Article in English | MEDLINE | ID: mdl-37285364

ABSTRACT

Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.


Subject(s)
Olea , Olea/chemistry , Fruit , Trees , Phenotype , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL