Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 20(4): e2305192, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37718499

ABSTRACT

Lead halide perovskite solar cells have been emerging as very promising candidates for applications in indoor photovoltaics. To maximize their indoor performance, it is of critical importance to suppress intrinsic defects of the perovskite active layer. Herein, a facile solvent-engineering strategy is developed for effective suppression of both surface and bulk defects in lead halide perovskite indoor solar cells, leading to a high efficiency of 35.99% under the indoor illumination of 1000 lux Cool-white light-emitting diodes. Replacing dimethylformamide (DMF) with N-methyl-2-pyrrolidone (NMP) in the perovskite precursor solvent significantly passivates the intrinsic defects within the thus-prepared perovskite films, prolongs the charge carrier lifetimes and reduces non-radiative charge recombination of the devices. Compared to the DMF, the much higher interaction energy between NMP and formamidinium iodide/lead halide contributes to the markedly improved quality of the perovskite thin films with reduced interfacial halide deficiency and non-radiative charge recombination, which in turn enhances the device performance. This work paves the way for developing efficient indoor perovskite solar cells for the increasing demand for power supplies of Internet-of-Things devices.

2.
J Hazard Mater ; 408: 124896, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33387722

ABSTRACT

Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag3+-enriched AgO/Ag/SnO2) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag3+-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C. For comparison, poorly oxidized silver oxide/silver/tin(IV) oxide (POSBTO with formula AgO/Ag/SnO2) nanocomposite has also been prepared by following the same synthetic procedures, except for the use of concentrated nitric acid. Finally, we studied in detail the anti-pathogenic capabilities of both nanocomposites against four hazardous pathogens, including pathogenic fish bacterium (Stenotrophomonas maltophilia stain EP10), oomycete (Phytophthora cactorum strain P-25), and two different strains of pathogenic strawberry fungus, BRSP08 and BRSP09 (Collectotrichum siamense). The bioassays reveal that the as-prepared HOSBTO and POSBTO nanocomposites exhibit significant inhibitory activities against the tested pathogenic bacterium, oomycete, and fungus in a dose-dependent manner. However, the degree of dose-dependent effectiveness of the two nanocomposites against each pathogen largely varies.


Subject(s)
Metal Nanoparticles , Nanocomposites , Animals , Anti-Bacterial Agents , Oxides , Silver , Silver Compounds , Tin
SELECTION OF CITATIONS
SEARCH DETAIL