Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 584(7822): 614-618, 2020 08.
Article in English | MEDLINE | ID: mdl-32612233

ABSTRACT

Oral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis1-5. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance6. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections1,2,4,7-9. Long-acting agents from new antiretroviral classes can provide much-needed treatment options for people living with HIV who are heavily treatment-experienced, and additionally can improve adherence10. Here we describe GS-6207, a small molecule that disrupts the functions of HIV capsid protein and is amenable to long-acting therapy owing to its high potency, low in vivo systemic clearance and slow release kinetics from the subcutaneous injection site. Drawing on X-ray crystallographic information, we designed GS-6207 to bind tightly at a conserved interface between capsid protein monomers, where it interferes with capsid-protein-mediated interactions between proteins that are essential for multiple phases of the viral replication cycle. GS-6207 exhibits antiviral activity at picomolar concentrations against all subtypes of HIV-1 that we tested, and shows high synergy and no cross-resistance with approved antiretroviral drugs. In phase-1 clinical studies, monotherapy with a single subcutaneous dose of GS-6207 (450 mg) resulted in a mean log10-transformed reduction of plasma viral load of 2.2 after 9 days, and showed sustained plasma exposure at antivirally active concentrations for more than 6 months. These results provide clinical validation for therapies that target the functions of HIV capsid protein, and demonstrate the potential of GS-6207 as a long-acting agent to treat or prevent infection with HIV.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Capsid Proteins/antagonists & inhibitors , HIV-1/drug effects , Adolescent , Adult , Anti-HIV Agents/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Cells, Cultured , Drug Resistance, Viral/genetics , Female , HIV-1/growth & development , Humans , Male , Middle Aged , Models, Molecular , Virus Replication/drug effects , Young Adult
2.
Antimicrob Agents Chemother ; 68(4): e0137323, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38380945

ABSTRACT

Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species. This compound demonstrates potent inhibitory activity and high on-target selectivity for recombinant HIV-1 protease versus other aspartic proteases tested. In cell culture, GS-9770 inhibits Gag polyprotein cleavage and shows nanomolar anti-HIV-1 potency in primary human cells permissive to HIV-1 infection and against a broad range of HIV subtypes. GS-9770 demonstrates an improved resistance profile against a panel of patient-derived HIV-1 isolates with resistance to atazanavir and darunavir. In resistance selection experiments, GS-9770 prevented the emergence of breakthrough HIV-1 variants at all fixed drug concentrations tested and required multiple protease substitutions to enable outgrowth of virus exposed to escalating concentrations of GS-9770. This compound also remained fully active against viruses resistant to drugs from other antiviral classes and showed no in vitro antagonism when combined pairwise with drugs from other antiretroviral classes. Collectively, these preclinical data identify GS-9770 as a potent, non-peptidomimetic once-daily oral HIV PI with potential to overcome the persistent requirement for pharmacological boosting with this class of antiretroviral agents.


Subject(s)
HIV Infections , HIV Protease Inhibitors , HIV-1 , Humans , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Darunavir/pharmacology , Darunavir/therapeutic use , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , Drug Resistance, Viral , HIV-1/genetics , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Protease/genetics , HIV Protease/metabolism
3.
Antimicrob Agents Chemother ; 60(2): 806-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26596942

ABSTRACT

Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells. The nucleoside released by the prodrug balapiravir (R1626), 4'-azido cytidine, was a highly selective inhibitor of mitochondrial RNA transcription. The nucleotide prodrug of 2'-C-methyl guanosine, BMS-986094, showed a primary effect on mitochondrial function at submicromolar concentrations, followed by general cytotoxicity. In contrast, NI containing multiple ribose modifications, including the active forms of mericitabine and sofosbuvir, were poor substrates for PolRMT and did not show mitochondrial toxicity in cells. In general, these studies identified the prostate cell line PC-3 as more than an order of magnitude more sensitive to mitochondrial toxicity than the commonly used HepG2 cells. In conclusion, analogous to the role of mitochondrial DNA polymerase gamma in toxicity caused by some 2'-deoxynucleotide analogs, there is an association between HCV NI that interact with PolRMT and the observation of adverse events. More broadly applied, the sensitive methods for detecting mitochondrial toxicity described here may help in the identification of mitochondrial toxicity prior to clinical testing.


Subject(s)
Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/drug effects , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Mitochondria/drug effects , Cell Line , DNA Polymerase gamma , DNA-Directed DNA Polymerase/genetics , DNA-Directed RNA Polymerases/genetics , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Guanosine Monophosphate/analogs & derivatives , Guanosine Monophosphate/pharmacology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Nucleosides/pharmacology , Oxygen Consumption/drug effects , Protein Biosynthesis/drug effects , RNA/genetics , RNA, Mitochondrial , Sofosbuvir/pharmacology , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Virus Replication/drug effects
4.
Nat Med ; 25(9): 1377-1384, 2019 09.
Article in English | MEDLINE | ID: mdl-31501601

ABSTRACT

People living with HIV (PLWH) have expressed concern about the life-long burden and stigma associated with taking pills daily and can experience medication fatigue that might lead to suboptimal treatment adherence and the emergence of drug-resistant viral variants, thereby limiting future treatment options1-3. As such, there is strong interest in long-acting antiretroviral (ARV) agents that can be administered less frequently4. Herein, we report GS-CA1, a new archetypal small-molecule HIV capsid inhibitor with exceptional potency against HIV-2 and all major HIV-1 types, including viral variants resistant to the ARVs currently in clinical use. Mechanism-of-action studies indicate that GS-CA1 binds directly to the HIV-1 capsid and interferes with capsid-mediated nuclear import of viral DNA, HIV particle production and ordered capsid assembly. GS-CA1 selects in vitro for unfit GS-CA1-resistant capsid variants that remain fully susceptible to other classes of ARVs. Its high metabolic stability and low solubility enabled sustained drug release in mice following a single subcutaneous dosing. GS-CA1 showed high antiviral efficacy as a long-acting injectable monotherapy in a humanized mouse model of HIV-1 infection, outperforming long-acting rilpivirine. Collectively, these results demonstrate the potential of ultrapotent capsid inhibitors as new long-acting agents for the treatment of HIV-1 infection.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , HIV Infections/drug therapy , HIV-1/drug effects , Indazoles/pharmacology , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Animals , Anti-HIV Agents/therapeutic use , Capsid/drug effects , Capsid/metabolism , Capsid Proteins/genetics , DNA, Viral/drug effects , Delayed-Action Preparations , Drug Resistance, Viral/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , HIV-2/drug effects , HIV-2/pathogenicity , Humans , Indazoles/therapeutic use , Medication Adherence , Mice , Pyridines/therapeutic use
5.
Org Lett ; 17(2): 262-5, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25560385

ABSTRACT

Screening of a marine natural products library afforded three new analogues of the tetronic acid containing polyketide abyssomicin family and identified abyssomicin 2 as a selective reactivator of latent HIV virus. Examination of the mode of action of this new latent HIV reactivating agent demonstrated that it functions via a distinct mechanism compared to that of existing reactivating agents and is effective at reactivating latent virus in a subset of primary patient cell lines.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Furans/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Polyketides/chemistry , Protein Kinase C/chemistry , Virus Latency/drug effects , Cell Line , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase C/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL