Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Plant Cell ; 35(1): 598-616, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36269178

ABSTRACT

RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Immunity , RNA, Long Noncoding , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Immunity/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
2.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399403

ABSTRACT

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Subject(s)
Arabidopsis Proteins , Plant Immunity , Plant Immunity/genetics , Cyclopentanes , Transcription Factors/genetics , Transcription Factors/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
Plant Physiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230888

ABSTRACT

The mirid bug (Riptortus pedestris), a major soybean pest, migrates into soybean fields during the pod filling stage and causes staygreen syndrome, which leads to substantial yield losses. The mechanism by which R. pedestris elicits soybean (Glycine max) defenses and counter-defenses remains largely unexplored. In this study, we characterized a protein family from R. pedestris, designated Riptortus pedestris HAMP 1 (RPH1) and its putative paralogs (RPH1L1, 2, 3, 4, and 5), whose members exhibit dual roles in triggering and inhibiting plant immunity. RPH1 and RPH1L1 function as herbivore-associated molecular patterns (HAMPs), activating pattern-triggered immunity (PTI) in tobacco (Nicotiana benthamiana) and G. max. Furthermore, RPH1 stimulates jasmonic acid and ethylene biosynthesis in G. max, thereby enhancing its resistance to R. pedestris feeding. Additionally, RPH1 homologs are universally conserved across various herbivorous species, with many homologs also acting as HAMPs that trigger plant immunity. Interestingly, the remaining RPH1 putative paralogs (RPH1L2-5) serve as effectors that counteract RPH1-induced PTI, likely by disrupting the extracellular perception of RPH1. This research uncovers a HAMP whose homologs are conserved in both chewing and piercing-sucking insects. Moreover, it unveils an extracellular evasion mechanism utilized by herbivores to circumvent plant immunity using functionally differentiated paralogs.

4.
Mol Plant Microbe Interact ; 37(1): 15-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37856777

ABSTRACT

Oomycete pathogens secrete numerous crinkling and necrosis proteins (CRNs) to manipulate plant immunity and promote infection. However, the functional mechanism of CRN effectors is still poorly understood. Previous research has shown that the Phytophthora sojae effector PsCRN108 binds to the promoter of HSP90s and inhibits their expression, resulting in impaired plant immunity. In this study, we found that in addition to HSP90, PsCRN108 also suppressed other Heat Shock Protein (HSP) family genes, including HSP40. Interestingly, PsCRN108 inhibited the expression of NbHSP40 through its promoter, but did not directly bind to its promoter. Instead, PsCRN108 interacted with NbCAMTA2, a negative regulator of plant immunity. NbCAMTA2 was a negative regulator of NbHSP40 expression, and PsCRN108 could promote such inhibition activity of NbCAMTA2. Our results elucidated the multiple roles of PsCRN108 in the suppression of plant immunity and revealed a new mechanism by which the CRN effector hijacked transcription factors to affect immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Phytophthora , Phytophthora/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Plant Immunity , Plant Diseases
5.
Pestic Biochem Physiol ; 203: 106021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084780

ABSTRACT

The role of melatonin (MT), an essential phytohormone controlling the physiological and biochemical reactions of plants to biotic and abiotic stress, in alleviating pesticide phytotoxicity remains unclear. This study explores the effects of MT (0 and 200 mg/L) and six doses of fluroxypyr-meptyl (FLUME) (0-0.14 mg/L) on the physiological response of rice (Oryza sativa). FLUME exposure inhibited the growth of rice seedlings, with MT treatment ameliorating this effect. To determine the biochemical processes and catalytic events involved in FLUME breakdown in rice, six rice root and shoot libraries exposed to either FLUME or FLUME-MT were generated and then subjected to RNA-Seq-LC-Q-TOF-HRMS/MS analyses. The results showed that 1510 root genes and 139 shoot genes exhibited higher upregulation in plants treated with an ecologically realistic FLUME concentration and MT than in those treated with FLUME alone. Gene enrichment analysis revealed numerous FLUME-degradative enzymes operating in xenobiotic tolerance to environmental stress and molecular metabolism. Regarding the FLUME degradation process, certain differentially expressed genes were responsible for producing important enzymes, such as cytochrome P450, glycosyltransferases, and acetyltransferases. Four metabolites and ten conjugates in the pathways involving hydrolysis, malonylation, reduction, glycosylation, or acetylation were characterized using LC-Q-TOF-HRMS/MS to support FLUME-degradative metabolism. Overall, external application of MT can increase rice tolerance to FLUME-induced oxidative stress by reducing phytotoxicity and FLUME accumulation. This study provides insights into MT's role in facilitating FLUME degradation, with potential implications for engineering genotypes supporting FLUME degradation in paddy crops.


Subject(s)
Melatonin , Oryza , Oryza/drug effects , Oryza/metabolism , Oryza/genetics , Oryza/growth & development , Melatonin/pharmacology , Plant Roots/metabolism , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/metabolism , Gene Expression Regulation, Plant/drug effects
6.
PLoS Pathog ; 17(3): e1009388, 2021 03.
Article in English | MEDLINE | ID: mdl-33711077

ABSTRACT

Phytophthora genomes encode a myriad of Crinkler (CRN) effectors, some of which contain putative kinase domains. Little is known about the host targets of these kinase-domain-containing CRNs and their infection-promoting mechanisms. Here, we report the host target and functional mechanism of a conserved kinase CRN effector named CRN78 in a notorious oomycete pathogen, Phytophthora sojae. CRN78 promotes Phytophthora capsici infection in Nicotiana benthamiana and enhances P. sojae virulence on the host plant Glycine max by inhibiting plant H2O2 accumulation and immunity-related gene expression. Further investigation reveals that CRN78 interacts with PIP2-family aquaporin proteins including NbPIP2;2 from N. benthamiana and GmPIP2-13 from soybean on the plant plasma membrane, and membrane localization is necessary for virulence of CRN78. Next, CRN78 promotes phosphorylation of NbPIP2;2 or GmPIP2-13 using its kinase domain in vivo, leading to their subsequent protein degradation in a 26S-dependent pathway. Our data also demonstrates that NbPIP2;2 acts as a H2O2 transporter to positively regulate plant immunity and reactive oxygen species (ROS) accumulation. Phylogenetic analysis suggests that the phosphorylation sites of PIP2 proteins and the kinase domains of CRN78 homologs are highly conserved among higher plants and oomycete pathogens, respectively. Therefore, this study elucidates a conserved and novel pathway used by effector proteins to inhibit host cellular defenses by targeting and hijacking phosphorylation of plant aquaporin proteins.


Subject(s)
Phytophthora/pathogenicity , Plant Diseases/immunology , Plant Immunity/physiology , Plant Proteins/metabolism , Virulence Factors/metabolism , Phosphorylation , Signal Transduction/physiology
7.
New Phytol ; 237(6): 2388-2403, 2023 03.
Article in English | MEDLINE | ID: mdl-36519219

ABSTRACT

Apolygus lucorum (Meyer-Dur; Heteroptera: Miridae) is a major agricultural pest infesting crops, vegetables, and fruit trees. During feeding, A. lucorum secretes a plethora of effectors into its hosts to promote infestation. However, the molecular mechanisms of these effectors manipulating plant immunity are largely unknown. Here, we investigated the molecular mechanism underlying the effector Al106 manipulation of plant-insect interaction by RNA interference, electrical penetration graph, insect and pathogen bioassays, protein-protein interaction studies, and protein ubiquitination experiment. Expression of Al106 in Nicotiana benthamiana inhibits pathogen-associated molecular pattern-induced cell death and reactive oxygen species burst, and promotes insect feeding and plant pathogen infection. In addition, peptidyl-prolyl cis-trans isomerase (PPIase) activity of Al106 is required for its function to inhibit PTI.Al106 interacts with a plant U-box (PUB) protein, PUB33, from N. benthamiana and Arabidopsis thaliana. We also demonstrated that PUB33 is a positive regulator of plant immunity. Furthermore, an in vivo assay revealed that Al106 inhibits ubiquitination of NbPUB33 depending on PPIase activity. Our findings revealed that a novel cyclophilin effector may interact with plant PUB33 to suppress plant immunity and facilitate insect feeding in a PPIase activity-dependent manner.


Subject(s)
Cyclophilins , Heteroptera , Animals , Fruit , Trees , Plant Immunity
8.
Plant J ; 108(1): 67-80, 2021 10.
Article in English | MEDLINE | ID: mdl-34374485

ABSTRACT

Plants deploy various immune receptors to recognize pathogen-derived extracellular signals and subsequently activate the downstream defense response. Recently, increasing evidence indicates that the endoplasmic reticulum (ER) plays a part in the plant defense response, known as ER stress-mediated immunity (ERSI), that halts pathogen infection. However, the mechanism for the ER stress response to signals of pathogen infection remains unclear. Here, we characterized the ER stress response regulator NAC089, which was previously reported to positively regulate programed cell death (PCD), functioning as an ERSI regulator. NAC089 translocated from the ER to the nucleus via the Golgi in response to Phytophthora capsici culture filtrate (CF), which is a mixture of pathogen-associated molecular patterns (PAMPs). Plasma membrane localized co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) was required for the CF-mediated translocation of NAC089. The nuclear localization of NAC089, determined by the NAC domain, was essential for immune activation and PCD. Furthermore, NAC089 positively contributed to host resistance against the oomycete pathogen P. capsici and the bacteria pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We also proved that NAC089-mediated immunity is conserved in Nicotiana benthamiana. Together, we found that PAMP signaling induces the activation of ER stress in plants, and that NAC089 is required for ERSI and plant resistance against pathogens.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Phytophthora/physiology , Plant Diseases/immunology , Plant Immunity , Pseudomonas syringae/physiology , Transcription Factors/metabolism , Apoptosis , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Disease Resistance , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Golgi Apparatus/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Transcription Factors/genetics
9.
New Phytol ; 232(1): 264-278, 2021 10.
Article in English | MEDLINE | ID: mdl-34157161

ABSTRACT

Receptor-like cytoplasmic kinase subfamily VII (RLCK-VII) proteins are the central immune kinases in plant pattern-recognition receptor (PRR) complexes, and they orchestrate a complex array of defense responses against bacterial and fungal pathogens. However, the role of RLCK-VII in plant-oomycete pathogen interactions has not been established. Phytophthora capsici is a notorious oomycete pathogen that infects many agriculturally important vegetables. Here, we report the identification of RXLR25, an RXLR effector that is required for the virulence of P. capsici. In planta expression of RXLR25 significantly enhanced plants' susceptibility to Phytophthora pathogens. Microbial pattern-induced immune activation in Arabidopsis was severely impaired by RXLR25. We further showed that RXLR25 interacts with RLCK-VII proteins. Using nine rlck-vii high-order mutants, we observed that RLCK-VII-6 and RLCK-VII-8 members are required for resistance to P. capsici. The RLCK-VII-6 members are specifically required for Phytophthora culture filtrate (CF)-induced immune responses. RXLR25 directly targets RLCK-VII proteins such as BIK1, PBL8, and PBL17 and inhibits pattern-induced phosphorylation of RLCK-VIIs to suppress downstream immune responses. This study identified a key virulence factor for P. capsici, and the results revealed the importance of RLCK-VII proteins in plant-oomycete interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytophthora infestans , Arabidopsis Proteins/genetics , Plant Diseases , Plant Immunity , Protein Serine-Threonine Kinases
10.
J Exp Bot ; 72(15): 5751-5765, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34195821

ABSTRACT

Due to their sessile nature, plants must respond to various environmental assaults in a coordinated manner. The endoplasmic reticulum is a central hub for plant responses to various stresses. We previously showed that Phytophthora utilizes effector PsAvh262-mediated binding immunoglobulin protein (BiP) accumulation for suppressing endoplasmic reticulum stress-triggered cell death. As a BiP binding partner, Bcl-2-associated athanogene 7 (BAG7) plays a crucial role in the maintenance of the unfolded protein response, but little is known about its role in plant immunity. In this work, we reveal a double-faced role of BAG7 in Arabidopsis-Phytophthora interaction in which it regulates endoplasmic reticulum stress-mediated immunity oppositely in different cellular compartments. In detail, it acts as a susceptibility factor in the endoplasmic reticulum, but plays a resistance role in the nucleus against Phytophthora. Phytophthora infection triggers the endoplasmic reticulum-to-nucleus translocation of BAG7, the same as abiotic heat stress; however, this process can be prevented by PsAvh262-mediated BiP accumulation. Moreover, the immunoglobulin/albumin-binding domain in PsAvh262 is essential for both pathogen virulence and BiP accumulation. Taken together, our study uncovers a double-faced role of BAG7; Phytophthora advances its colonization in planta by utilizing an effector to detain BAG7 in the endoplasmic reticulum.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytophthora , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Endoplasmic Reticulum Stress , Plant Diseases , Plant Immunity/genetics
11.
Mol Plant Microbe Interact ; 33(8): 1046-1058, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32330072

ABSTRACT

RXLR effectors, a class of secreted proteins that are transferred into host cells to manipulate host immunity, have been reported to widely exist in oomycetes, including those from genera Phytophthora, Hyaloperonospora, Albugo, and Saprolegnia. However, in Pythium species, no RXLR effector has yet been characterized, and the origin and evolution of such virulent effectors are still unknown. Here, we developed a modified regular expression method for de novo identification of RXLRs and characterized 359 putative RXLR effectors in nine Pythium species. Phylogenetic analysis revealed that all oomycetous RXLRs formed a single superfamily, suggesting that they might have a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures, and genome locations. In particular, there were significantly more RXLR proteins in the mosquito biological control agent P. guiyangense than in the other eight Pythium species, and P. guiyangense RXLRs might be the result of gene duplication and genome rearrangement events, as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts of the majority of the predicted RXLR genes, with some RXLR effectors induced in infection stages and one RXLR showing necrosis-inducing activity. Furthermore, all predicted RXLR genes were cloned from two biocontrol agents, P. oligandrum and P. periplocum, and three of the RXLR genes were found to induce a defense response in Nicotiana benthamiana. Taken together, our findings represent the first evidence of RXLR effectors in Pythium species, providing valuable information on their evolutionary patterns and the mechanisms of their interactions with diverse hosts.


Subject(s)
Multigene Family , Pythium/genetics , Genome , Phylogeny , Phytophthora , Pythium/pathogenicity , Synteny
12.
Genomics ; 111(3): 473-482, 2019 05.
Article in English | MEDLINE | ID: mdl-29522799

ABSTRACT

The basic helix-loop-helix (bHLH) family, one of the largest transcription factor groups in plants, regulates many critical developmental processes. However, their functions in plant defense have not been extensively studied in Nicotiana benthamiana, an important model plant species for phytopathology. Here, we identified N. benthamiana bHLH genes (NbbHLHs) using a whole-genome searching approach, and found that the NbbHLHs are highly enriched and some subfamilies are selectively expanded in N. benthamiana. The results showed that gene duplication may be responsible for bHLH family expansion in this plant. Furthermore, we analyzed their expression profiles upon infection with Phytophthora parasitica. Finally, 28 candidate NbbHLHs may play important roles in Phytophthora pathogen resistance using cis-element analysis and protein-interaction network prediction. Taken together, our results established a platform for future studies of the gene family and provide molecular insights into plant immune responses against P. parasitica.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Resistance , Nicotiana/metabolism , Phytophthora , Plant Diseases , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Computational Biology , Gene Duplication , Gene Expression Regulation, Plant , Genomics , Host-Pathogen Interactions , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/physiology , Protein Interaction Maps , Sequence Analysis, DNA , Nicotiana/genetics , Nicotiana/physiology
13.
Microb Pathog ; 123: 478-486, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30107193

ABSTRACT

Valsa pyri, an ascomycete pathogen that is a member of the Valsaceae family (Sordariomycetes, Diaporthales), which causes pear or apple canker and leads to tree death and massive yield losses. Here, we selected two V. pyri isolates (Vp14 and Vp297) that exhibited different invasion abilities for transcriptomics analyses. Compared toVp297, Vp14 had stronger virulence and spread faster on host-like nutrients. Four samples, including mycelium or infectious mycelium, of the two isolates were sequenced. Clean reads were mapped to the V. pyri genome, and 12490 transcripts and 178 new genes were identified. There were dramatically fewer differentially expressed genes (DEGs) in Vp14 than in Vp297. According to GO and COG annotations, there were both more up- and down-regulated genes in Vp297 than in Vp14 except for genes involved in amino acid transport and metabolism, carbohydrate transport and metabolism, peroxidases and so on. Specific up-regulated DEGs, including genes encoding cell wall degrading enzymes and genes involved in nitrogen metabolism and peroxidases which play crucial roles in virulence and infectious growth, were especially enriched inVp14. These results indicate that the Vp14 isolate may infect its host and take up nutrition more efficiently, reflecting a stronger ability for invasion or infectious growth. Our analysesindicate that a successful V. pyri infection involves multiple instances of transcriptome remodeling to regulate gene functions. Comparative transcriptomics between isolates of V. pyri may aid in our understanding of the virulence mechanism of this pathogen.


Subject(s)
Ascomycota/growth & development , Ascomycota/genetics , Ascomycota/isolation & purification , Gene Expression Profiling , Plant Diseases/microbiology , Transcriptome , Ascomycota/pathogenicity , Base Sequence , Cell Wall/metabolism , China , DNA, Fungal , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Host-Pathogen Interactions , Malus/microbiology , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Mycelium , Nitrogen/metabolism , Peroxidases/genetics , Phenotype , Phylogeny , Plant Diseases/genetics , Pyrus/microbiology , Virulence
14.
Int J Mol Sci ; 19(7)2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29932128

ABSTRACT

Alternaria alternata (Fries) Keissler is a lethal pear pathogen that causes leaf black spot disease of pear in Southern China. Heat-stable activity factor (HSAF) is a polycyclic tetramate macrolactam (PTM) produced by Lysobacter enzymogenes and many other microbes with a broad-spectrum antifungal activity against many filamentous fungi. In this study, we evaluated the antifungal effect of HSAF against A. alternata and proposed its antifungal mechanism in A. alternata. We report that HSAF inhibited the mycelial growth of A. alternata in a dose-dependent manner. Transcriptomics analysis revealed that HSAF treatment resulted in an expression alteration of a wide range of genes, with 3729 genes being up-regulated, and 3640 genes being down-regulated. Furthermore, we observed that HSAF treatment disrupted multiple signaling networks and essential cellular metabolisms in A. alternata, including the AMPK signaling pathway, sphingolipid metabolism and signaling pathway, carbon metabolism and the TCA (tricarboxylic acid) cycle, cell cycle, nitrogen metabolism, cell wall synthesis and a key hub protein phosphatase 2A (PP2A). These observations suggest that HSAF breaches metabolism networks and ultimately induces increased thickness of the cell wall and apoptosis in A. alternata. The improved understanding of the antifungal mechanism of HSAF against filamentous fungi will aid in the future identification of the direct interaction target of HSAF and development of HSAF as a novel bio-fungicide.


Subject(s)
Alternaria/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal , Lactams, Macrocyclic/metabolism , Alternaria/drug effects , Alternaria/physiology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Cell Wall/drug effects , Cell Wall/microbiology , Gene Ontology , Lactams, Macrocyclic/pharmacology , Lysobacter/metabolism , Mycelium/drug effects , Mycelium/genetics , Mycelium/physiology , Plant Diseases/microbiology , Pyrus/microbiology
15.
Plant Commun ; : 101135, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277790

ABSTRACT

Plasma membrane intrinsic proteins (PIPs), a subclass of aquaporins (AQPs), play an important role in plant immunity by acting as H2O2 transporters. Their homeostasis is mostly maintained by C-terminal serine phosphorylation. However, the kinases that phosphorylate PIPs and manipulate their turnover are largely unknown. Here, we found that Arabidopsis thaliana PIP2;7 positively regulates plant immunity by transporting H2O2. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) directly interacts with and phosphorylates PIP2;7 at Ser273/276 to induce its degradation. During pathogen infection, CPK28 dissociated from PIP2;7 and destabilized, leading to PIP2;7 accumulation. As a counter, oomycete pathogens produce the conserved kinase effectors that stably bind and mediate the phosphorylate of PIP2;7 to induce its degradation. Our study identifies PIP2;7 as a novel substrate of CPK28 and its protein stability is negatively regulated by CPK28. Such phosphorylation could be mimicked by Phytophthora kinase effectors to promote infection. Accordingly, we developed a strategy to combat oomycete infection by using a phosphorylation-resistant PIP2;7S273/276A mutant. The strategy only allows accumulation of PIP2;7S273/276A during infection to limit potential side effects on normal plant growth.

16.
J Adv Res ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38442853

ABSTRACT

INTRODUCTION: Metformin (MET), derived from Galega officinalis, stands as the primary first-line medication for the treatment of type 2 diabetes (T2D). Despite its well-documented benefits in mammalian cellular processes, its functions and underlying mechanisms in plants remain unclear. OBJECTIVES: This study aimed to elucidate MET's role in inducing plant immunity and investigate the associated mechanisms. METHODS: To investigate the impact of MET on enhancing plant immune responses, we conducted assays measuring defense gene expression, reactive oxygen species (ROS) accumulation, mitogen-activated protein kinase (MAPK) phosphorylation, and pathogen infection. Additionally, surface plasmon resonance (SPR) and microscale thermophoresis (MST) techniques were employed to identify MET targets. Protein-protein interactions were analyzed using a luciferase complementation assay and a co-immunoprecipitation assay. RESULTS: Our findings revealed that MET boosts plant disease resistance by activating MAPKs, upregulating the expression of downstream defense genes, and fortifying the ROS burst. CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) was identified as a target of MET. It inhibited the interaction between BOTRYTIS-INDUCED KINASE 1 (BIK1) and CPK28, blocking CPK28 threonine 76 (T76) transphosphorylation by BIK1, and alleviating the negative regulation of immune responses by CPK28. Moreover, MET enhanced disease resistance in tomato, pepper, and soybean plants. CONCLUSION: Collectively, our data suggest that MET enhances plant immunity by blocking BIK1-mediated CPK28 phosphorylation.

17.
Cell Rep ; 42(11): 113391, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37930886

ABSTRACT

Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.


Subject(s)
HSP70 Heat-Shock Proteins , Oomycetes , HSP70 Heat-Shock Proteins/metabolism , Proteostasis , Virulence , Molecular Chaperones/metabolism , Oomycetes/metabolism
18.
Stress Biol ; 2(1): 24, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-37676368

ABSTRACT

Plant vascular pathogens are one kind of destructive pathogens in agricultural production. However, mechanisms behind the vascular pathogen-recognition and the subsequent defense responses of plants are not well known. A recent pioneering study on plant vascular immunity discovered a conserved MKP1-MPK-MYB signaling cascade that activates lignin biosynthesis in vascular tissues to confer vascular resistance in both monocot rice and the dicot Arabidopsis. The breakthrough provides a novel view on plant immunity to vascular pathogens and offers a potential strategy for the future breeding of disease-resistant crops.

19.
Mol Plant Pathol ; 23(12): 1721-1736, 2022 12.
Article in English | MEDLINE | ID: mdl-36193624

ABSTRACT

The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors that enter the plant cells and suppress host immunity. Only a few of these genes are conserved across different strains and species. Such core effectors might target hub genes and immune pathways in hosts. Here, we describe the functional characterization of the core P. capsici RXLR effector RXLR242. The expression of RXLR242 was up-regulated during infection, and its ectopic expression in Nicotiana benthamiana, an experimental plant host, further promoted Phytophthora infection. RXLR242 physically interacted with a group of RAB proteins that belong to the small GTPase family and play a role in regulating transport pathways in the intracellular membrane trafficking system. In addition, RXLR242 impeded the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast. This phenomenon resulted from the competitive binding of RXLR242 to RABE1-7. We also found that RXLR242 interfered with the association between RABA4-3 and its binding protein, thereby disrupting the trafficking of the membrane receptor FLAGELLIN-SENSING 2. Thus, RXLR242 manipulates plant immunity by targeting RAB proteins and disrupting protein trafficking in the host plants.


Subject(s)
Phytophthora infestans , Phytophthora infestans/metabolism , Plant Immunity/genetics , Plant Diseases , Proteins/metabolism , Plants/metabolism , Protein Transport
20.
Front Plant Sci ; 13: 830636, 2022.
Article in English | MEDLINE | ID: mdl-35310640

ABSTRACT

Microbial necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) act as cytolytic toxins and immunogenic patterns in plants. Our previous work shows that cytolytic NLPs (i.e., PyolNLP5 and PyolNLP7) from the biocontrol agent Pythium oligandrum enhance plant resistance against Phytophthora pathogens by inducing the expression of plant defensins. However, the relevance between PyolNLP-induced necrosis and plant resistance activation is still unclear. Here, we find that the necrosis-inducing activity of PyolNLP5 requires amino acid residues D127 and E129 within the conserved "GHRHDLE" motif. However, PyolNLP5-mediated plant disease resistance is irrelevant to its necrosis-inducing activity and the accumulation of reactive oxygen species (ROS). Furthermore, we reveal the positive role of non-cytotoxic PyolNLPs in enhancing plant resistance against Phytophthora pathogens and the fugal pathogen Sclerotinia sclerotiorum. Similarly, non-cytotoxic PyolNLPs also activate plant defense in a cell death-independent manner and induce defensin expression. The functions of non-cytotoxic PyolNLP13/14 rely on their conserved nlp24-like peptide pattern. Synthetic Pyolnlp24s derived from both cytotoxic and non-cytotoxic PyolNLPs can induce plant defensin expression. Unlike classic nlp24, Pyolnlp24s lack the ability of inducing ROS burst in plants with the presence of Arabidopsis nlp24 receptor RLP23. Taken together, our work demonstrates that PyolNLPs enhance plant resistance in an RLP23-independent manner, which requires the conserved nlp24-like peptide pattern but is uncoupled with ROS burst and cell death.

SELECTION OF CITATIONS
SEARCH DETAIL