Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29290465

ABSTRACT

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Subject(s)
Apoptosis , Glutathione Peroxidase/metabolism , Seizures/metabolism , Selenium/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Glutathione Peroxidase/genetics , HEK293 Cells , Humans , Hydrogen Peroxide/toxicity , Interneurons/metabolism , Lipid Peroxidation , Male , Mice , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Seizures/etiology
2.
Nature ; 576(7786): 287-292, 2019 12.
Article in English | MEDLINE | ID: mdl-31776510

ABSTRACT

Mammals form scars to quickly seal wounds and ensure survival by an incompletely understood mechanism1-5. Here we show that skin scars originate from prefabricated matrix in the subcutaneous fascia. Fate mapping and live imaging revealed that fascia fibroblasts rise to the skin surface after wounding, dragging their surrounding extracellular jelly-like matrix, including embedded blood vessels, macrophages and peripheral nerves, to form the provisional matrix. Genetic ablation of fascia fibroblasts prevented matrix from homing into wounds and resulted in defective scars, whereas placing an impermeable film beneath the skin-preventing fascia fibroblasts from migrating upwards-led to chronic open wounds. Thus, fascia contains a specialized prefabricated kit of sentry fibroblasts, embedded within a movable sealant, that preassemble together diverse cell types and matrix components needed to heal wounds. Our findings suggest that chronic and excessive skin wounds may be attributed to the mobility of the fascia matrix.


Subject(s)
Fascia/pathology , Wound Healing , Animals , Biomarkers/analysis , Cell Movement , Fascia/transplantation , Fibroblasts , Keloid , Mice, Inbred C57BL
3.
Cell Microbiol ; 23(12): e13399, 2021 12.
Article in English | MEDLINE | ID: mdl-34729894

ABSTRACT

Hepatitis B virus (HBV) infection is a major health threat causing 880,000 deaths each year. Available therapies control viral replication but do not cure HBV, leaving patients at risk to develop hepatocellular carcinoma. Here, we show that HBV envelope proteins (HBs)-besides their integration into endosomal membranes-become embedded in the plasma membrane where they can be targeted by redirected T-cells. HBs was detected on the surface of HBV-infected cells, in livers of mice replicating HBV and in HBV-induced hepatocellular carcinoma. Staining with HBs-specific recombinant antibody MoMab recognising a conformational epitope indicated that membrane-associated HBs remains correctly folded in HBV-replicating cells in cell culture and in livers of HBV-transgenic mice in vivo. MoMab coated onto superparamagnetic iron oxide nanoparticles allowed to detect membrane-associated HBs after HBV infection by electron microscopy in distinct stretches of the hepatocyte plasma membrane. Last but not least, we demonstrate that HBs located on the cell surface allow therapeutic targeting of HBV-positive cells by T-cells either engrafted with a chimeric antigen receptor or redirected by bispecific, T-cell engager antibodies. TAKE AWAYS: HBs become translocated to the plasma membrane. Novel, recombinant antibody confirmed proper conformation of HBs on the membrane. HBs provide an interesting target by T-cell-based, potentially curative therapies.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B , Animals , Cell Membrane , Hepatitis B/therapy , Hepatitis B virus , Humans , Mice , Viral Envelope Proteins
4.
Nature ; 535(7612): 430-4, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27398620

ABSTRACT

Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of ß-cells. Pancreatic ß-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature ß-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger ß-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for ß-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional ß-cell heterogeneity and induce ß-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional ß-cell mass in diabetic patients.


Subject(s)
Islets of Langerhans/cytology , Animals , Biomarkers/analysis , Cell Differentiation , Cell Lineage/genetics , Cell Polarity , Cell Proliferation , Humans , Insulin Resistance , Islets of Langerhans/metabolism , Ligands , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Wnt Signaling Pathway
5.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Article in English | MEDLINE | ID: mdl-30296435

ABSTRACT

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Subject(s)
Autophagy-Related Protein 5/metabolism , Autophagy , Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Pancreatic Neoplasms/metabolism , Animals , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/prevention & control , Carcinoma, Pancreatic Ductal/secondary , Cathepsins/genetics , Cathepsins/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Genes, ras , Heterozygote , Homozygote , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Signal Transduction , Tumor Burden , Tumor Cells, Cultured
6.
Chembiochem ; 21(17): 2495-2502, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32291951

ABSTRACT

Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid/chemistry , Aniline Compounds/chemistry , Fluorescent Dyes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Positron-Emission Tomography , Thiazoles/chemistry , Amyloid/metabolism , Binding Sites , Carbon Isotopes , Molecular Structure
7.
Haematologica ; 105(4): 937-950, 2020 04.
Article in English | MEDLINE | ID: mdl-31248967

ABSTRACT

Glutathione peroxidase 4 (GPX4) is unique as it is the only enzyme that can prevent detrimental lipid peroxidation in vivo by reducing lipid peroxides to the respective alcohols thereby stabilizing oxidation products of unsaturated fatty acids. During reticulocyte maturation, lipid peroxidation mediated by 15-lipoxygenase in humans and rabbits and by 12/15-lipoxygenase (ALOX15) in mice was considered the initiating event for the elimination of mitochondria but is now known to occur through mitophagy. Yet, genetic ablation of the Alox15 gene in mice failed to provide evidence for this hypothesis. We designed a different genetic approach to tackle this open conundrum. Since either other lipoxygenases or non-enzymatic autooxidative mechanisms may compensate for the loss of Alox15, we asked whether ablation of Gpx4 in the hematopoietic system would result in the perturbation of reticulocyte maturation. Quantitative assessment of erythropoiesis indices in the blood, bone marrow (BM) and spleen of chimeric mice with Gpx4 ablated in hematopoietic cells revealed anemia with an increase in the fraction of erythroid precursor cells and reticulocytes. Additional dietary vitamin E depletion strongly aggravated the anemic phenotype. Despite strong extramedullary erythropoiesis reticulocytes failed to mature and accumulated large autophagosomes with engulfed mitochondria. Gpx4-deficiency in hematopoietic cells led to systemic hepatic iron overload and simultaneous severe iron demand in the erythroid system. Despite extremely high erythropoietin and erythroferrone levels in the plasma, hepcidin expression remained unchanged. Conclusively, perturbed reticulocyte maturation in response to Gpx4 loss in hematopoietic cells thus causes ineffective erythropoiesis, a phenotype partially masked by dietary vitamin E supplementation.


Subject(s)
Erythropoiesis , Iron , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reticulocytes , Vitamin E , Animals , Homeostasis , Mice , Rabbits
8.
Clin Chem ; 65(10): 1276-1286, 2019 10.
Article in English | MEDLINE | ID: mdl-31492715

ABSTRACT

BACKGROUND: Adrenocortical carcinoma (ACC) is a rare tumor with variable prognosis even within the same tumor stage. Cancer-related sex hormones and their sulfated metabolites in body fluids can be used as tumor markers. The role of steroid sulfation in ACC has not yet been studied. MALDI mass spectrometry imaging (MALDI-MSI) is a novel tool for tissue-based chemical phenotyping. METHODS: We performed phenotyping of formalin-fixed, paraffin-embedded tissue samples from 72 ACC by MALDI-MSI at a metabolomics level. RESULTS: Tumoral steroid hormone metabolites-estradiol sulfate [hazard ratio (HR) 0.26; 95% CI, 0.10-0.69; P = 0.005] and estrone 3-sulfate (HR 0.22; 95% CI, 0.07-0.63; P = 0.003)-were significantly associated with prognosis in Kaplan-Meier analyses and after multivariable adjustment for age, tumor stage, and sex (HR 0.29; 95% CI, 0.11-0.79; P = 0.015 and HR 0.30; 95% CI, 0.10-0.91; P = 0.033, respectively). Expression of sulfotransferase SULT2A1 was associated with prognosis to a similar extent and was validated to be a prognostic factor in two published data sets. We discovered the presence of estradiol-17ß 3,17-disulfate (E2S2) in a subset of tumors with particularly poor overall survival. Electron microscopy revealed novel membrane-delimited organelles in only these tumors. By applying cluster analyses of metabolomic data, 3 sulfation-related phenotypes exhibited specific metabolic features unrelated to steroid metabolism. CONCLUSIONS: MALDI-MSI provides novel insights into the pathophysiology of ACC. Steroid hormone sulfation may be used for prognostication and treatment stratification. Sulfation-related metabolic reprogramming may be of relevance also in conditions beyond the rare ACC and can be directly investigated by the use of MALDI-MSI.


Subject(s)
Adrenal Cortex Neoplasms/mortality , Adrenocortical Carcinoma/mortality , Biomarkers, Tumor/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Steroids/analysis , Adolescent , Adrenal Cortex Neoplasms/metabolism , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/metabolism , Adrenocortical Carcinoma/pathology , Adult , Aged , Biomarkers, Tumor/metabolism , Child , Estradiol/analogs & derivatives , Estradiol/analysis , Estradiol/metabolism , Estrone/analogs & derivatives , Estrone/analysis , Estrone/metabolism , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Steroids/metabolism , Sulfotransferases/metabolism , Young Adult
9.
Nat Chem Biol ; 13(1): 91-98, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27842070

ABSTRACT

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


Subject(s)
Apoptosis , Coenzyme A Ligases/metabolism , Glutathione Peroxidase/metabolism , Mammary Neoplasms, Experimental/metabolism , Animals , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Coenzyme A Ligases/antagonists & inhibitors , Coenzyme A Ligases/deficiency , Female , Glutathione Peroxidase/deficiency , Humans , Hypoglycemic Agents/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Necrosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Thiazolidinediones/pharmacology
10.
Am J Respir Crit Care Med ; 198(12): 1527-1538, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30044642

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterized by lung epithelial cell injury, increased (myo)fibroblast activation, and extracellular matrix deposition. Extracellular vesicles (EVs) regulate intercellular communication by carrying a variety of signaling mediators, including WNT (wingless/integrated) proteins. The relevance of EVs in pulmonary fibrosis and their potential contribution to disease pathogenesis, however, remain unexplored.Objectives: To characterize EVs and study the role of EV-bound WNT signaling in IPF.Methods: We isolated EVs from BAL fluid (BALF) from experimental lung fibrosis as well as samples from IPF, non-IPF interstitial lung disease (ILD), non-ILD, and healthy volunteers from two independent cohorts. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Primary human lung fibroblasts (phLFs) were used for EV isolation and analyzed by metabolic activity assays, cell counting, quantitative PCR, and Western blotting upon WNT gain- and loss-of-function studies.Measurements and Main Results: We found increased EVs, particularly exosomes, in BALF from experimental lung fibrosis as well as from patients with IPF. WNT5A was secreted on EVs in lung fibrosis and induced by transforming growth factor-ß in primary human lung fibroblasts. The phLF-derived EVs induced phLF proliferation, which was attenuated by WNT5A silencing and antibody-mediated inhibition and required intact EV structure. Similarly, EVs from IPF BALF induced phLF proliferation, which was mediated by WNT5A.Conclusions: Increased EVs function as carriers for signaling mediators, such as WNT5A, in IPF and thus contribute to disease pathogenesis. Characterization of EV secretion and composition may lead to novel approaches to diagnose and develop treatments for pulmonary fibrosis.


Subject(s)
Extracellular Vesicles , Idiopathic Pulmonary Fibrosis/etiology , Signal Transduction , Wnt-5a Protein/physiology , Adult , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged
11.
Lab Invest ; 98(1): 141-149, 2018 01.
Article in English | MEDLINE | ID: mdl-29035378

ABSTRACT

Animal models can reproduce some model-specific aspects of human diseases, but some animal models translate poorly or fail to translate to the corresponding human disease. Here, we develop a strategy to systematically compare human and mouse tissues, and conduct a proof-of-concept experiment to identify molecular similarities and differences using patients with idiopathic pulmonary fibrosis and a bleomycin-induced fibrosis mouse model. Our novel approach employs high-throughput tissue microarrays (TMAs) of humans and mice, high-resolution matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance-mass spectrometry imaging (MALDI-FT-ICR-MSI) to spatially resolve mass spectra at the level of specific metabolites, and hierarchical clustering and pathway enrichment analysis to identify functionally similar/different molecular patterns and pathways in pathological lesions of humans and mice. We identified a large number of common molecules (n=1366) and fewer exclusive molecules in humans (n=83) and mice (n=54). Among the common molecules, the 'ascorbate and aldarate metabolism' pathway had the highest similarity in human and mouse lesions. This proof-of-concept study demonstrates that our novel strategy employing a reliable and easy-to-perform experimental design accurately identifies pathways and factors that can be directly compared between animal models and human diseases.


Subject(s)
Disease Models, Animal , Lung/metabolism , Pulmonary Fibrosis/metabolism , Secondary Metabolism , Administration, Inhalation , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/adverse effects , Bleomycin/administration & dosage , Bleomycin/adverse effects , Cluster Analysis , Cyclotrons , Humans , Immunohistochemistry , Lung/drug effects , Lung/pathology , Lung/surgery , Metabolomics/methods , Mice , Physiology, Comparative/methods , Proof of Concept Study , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/surgery , Secondary Metabolism/drug effects , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Tissue Array Analysis
12.
Eur Respir J ; 52(3)2018 09.
Article in English | MEDLINE | ID: mdl-30072508

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal condition that reduces life expectancy and shows a limited response to available therapies. Pirfenidone has been approved for treatment of IPF, but little is known about the distinct metabolic changes that occur in the lung upon pirfenidone administration.Here, we performed a proof-of-concept study using high-resolution quantitative matrix-assisted laser desorption/ionisation Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI) to simultaneously detect, visualise and quantify in situ endogenous and exogenous metabolites in lungs of mice subjected to experimental fibrosis and human patients with IPF, and to assess the effect of pirfenidone treatment on metabolite levels.Metabolic pathway analysis and endogenous metabolite quantification revealed that pirfenidone treatment restores redox imbalance and glycolysis in IPF tissues, and downregulates ascorbate and aldarate metabolism, thereby likely contributing to in situ modulation of collagen processing. As such, we detected specific alterations in metabolite pathways in fibrosis and, importantly, metabolic recalibration following pirfenidone treatment.Together, these results highlight the suitability of high-resolution MALDI-FTICR-MSI for deciphering the therapeutic effects of pirfenidone and provide a preliminary analysis of the metabolic changes that occur during pirfenidone treatment in vivo These data may therefore contribute to improvement of currently available therapies for IPF.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Idiopathic Pulmonary Fibrosis/drug therapy , Pyridones/metabolism , Pyridones/pharmacology , Animals , Female , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Proof of Concept Study , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Distribution
13.
Biochim Biophys Acta Gen Subj ; 1862(1): 51-60, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29024724

ABSTRACT

An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.


Subject(s)
Fixatives/chemistry , Metabolomics/methods , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Fixation/methods , Animals , Humans , Mice , Peptides/analysis
14.
Am J Respir Cell Mol Biol ; 57(1): 77-90, 2017 07.
Article in English | MEDLINE | ID: mdl-28257580

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix, in particular, collagens. Two IPF therapeutics, nintedanib and pirfenidone, decelerate lung function decline, but their underlying mechanisms of action are poorly understood. In this study, we sought to analyze their effects on collagen synthesis and maturation at important regulatory levels. Primary human fibroblasts from patients with IPF and healthy donors were treated with nintedanib (0.01-1.0 µM) or pirfenidone (100-1,000 µM) in the absence or presence of transforming growth factor-ß1. Effects on collagen, fibronectin, FKBP10, and HSP47 expression, and collagen I and III secretion, were analyzed by quantitative polymerase chain reaction and Western blot. The appearance of collagen fibrils was monitored by scanning electron microscopy, and the kinetics of collagen fibril assembly was assessed using a light-scattering approach. In IPF fibroblasts, nintedanib reduced the expression of collagen I and V, fibronectin, and FKBP10 and attenuated the secretion of collagen I and III. Pirfenidone also down-regulated collagen V but otherwise showed fewer and less pronounced effects. By and large, the effects were similar in donor fibroblasts. For both drugs, electron microscopy of IPF fibroblast cultures revealed fewer and thinner collagen fibrils compared with untreated controls. Finally, both drugs dose-dependently delayed fibril formation of purified collagen I. In summary, both drugs act on important regulatory levels in collagen synthesis and processing. Nintedanib was more effective in down-regulating profibrotic gene expression and collagen secretion. Importantly, both drugs inhibited collagen I fibril formation and caused a reduction in and an altered appearance of collagen fibril bundles, representing a completely novel mechanism of action for both drugs.


Subject(s)
Fibrillar Collagens/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Indoles/therapeutic use , Pyridones/therapeutic use , Collagen Type I/metabolism , Down-Regulation/drug effects , Extracellular Matrix Proteins/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , HSP47 Heat-Shock Proteins/metabolism , Humans , Indoles/pharmacology , Lung/pathology , Protein Processing, Post-Translational/drug effects , Pyridones/pharmacology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Transcription, Genetic/drug effects
15.
Dev Biol ; 399(1): 2-14, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25512301

ABSTRACT

The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.


Subject(s)
Motor Neurons/metabolism , Neuropilin-1/metabolism , Semaphorin-3A/metabolism , Signal Transduction/physiology , Animals , Animals, Newborn , Axons/metabolism , Axons/physiology , Axons/ultrastructure , Body Weight/genetics , Body Weight/physiology , Bone Development/genetics , Bone Development/physiology , Bone and Bones/embryology , Bone and Bones/innervation , Bone and Bones/metabolism , Forelimb/embryology , Forelimb/growth & development , Forelimb/innervation , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Motor Activity/genetics , Motor Activity/physiology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Muscle, Skeletal/embryology , Muscle, Skeletal/growth & development , Muscle, Skeletal/innervation , Nerve Fibers/metabolism , Nerve Fibers/physiology , Nerve Fibers/ultrastructure , Neuropilin-1/genetics , Semaphorin-3A/genetics , Signal Transduction/genetics , Time Factors
16.
J Biol Chem ; 290(23): 14668-78, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25922076

ABSTRACT

The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with a targeted mutation of the active site selenocysteine of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4(-/-) embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breeding and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoa midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mitochondrial Gpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared with selenocysteine at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Because the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and as a structural protein, tightly controlled expression of functional Gpx4 emerges as a key for full male fertility.


Subject(s)
Amino Acid Substitution , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Infertility, Male/genetics , Spermatogenesis , Animals , Catalytic Domain , Cells, Cultured , Embryo Loss/genetics , Embryo Loss/metabolism , Embryo Loss/pathology , Female , Heterozygote , Homozygote , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Mice , Mice, Transgenic , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenocysteine/genetics , Serine/genetics , Spermatozoa/metabolism , Spermatozoa/pathology , Spermatozoa/ultrastructure
17.
Gastroenterology ; 148(3): 626-638.e17, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25497209

ABSTRACT

BACKGROUND & AIMS: Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis. METHODS: We created mice with pancreas-specific disruption of Atg5 (Ptf1aCreex1;Atg5F/F mice) and compared them to control mice. Pancreata were collected and histology, immunohistochemistry, transcriptome, and metabolome analyses were performed. ATG5-deficient mice were placed on diets containing 25% palm oil and compared with those on a standard diet. Another set of mice received the antioxidant N-acetylcysteine. Pancreatic tissues were collected from 8 patients with chronic pancreatitis (CP) and compared with pancreata from ATG5-deficient mice. RESULTS: Mice with pancreas-specific disruption of Atg5 developed atrophic CP, independent of ß-cell function; a greater proportion of male mice developed CP than female mice. Pancreata from ATG5-deficient mice had signs of inflammation, necrosis, acinar-to-ductal metaplasia, and acinar-cell hypertrophy; this led to tissue atrophy and degeneration. Based on transcriptome and metabolome analyses, ATG5-deficient mice produced higher levels of reactive oxygen species than control mice, and had insufficient activation of glutamate-dependent metabolism. Pancreata from these mice had reduced autophagy, increased levels of p62, and increases in endoplasmic reticulum stress and mitochondrial damage, compared with tissues from control mice; p62 signaling to Nqo1 and p53 was also activated. Dietary antioxidants, especially in combination with palm oil-derived fatty acids, blocked progression to CP and pancreatic acinar atrophy. Tissues from patients with CP had many histologic similarities to those from ATG5-deficient mice. CONCLUSIONS: Mice with pancreas-specific disruption of Atg5 develop a form of CP similar to that of humans. CP development appears to involve defects in autophagy, glutamate-dependent metabolism, and increased production of reactive oxygen species. These mice might be used to identify therapeutic targets for CP.


Subject(s)
Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Microtubule-Associated Proteins/genetics , Pancreas/metabolism , Pancreatitis, Chronic/genetics , Acetylcysteine/pharmacology , Animals , Atrophy , Autophagy/immunology , Autophagy-Related Protein 5 , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Female , Free Radical Scavengers/pharmacology , Humans , Inflammation , Male , Mice , Mice, Knockout , NAD(P)H Dehydrogenase (Quinone)/metabolism , Palm Oil , Pancreas/drug effects , Pancreas/immunology , Pancreatitis, Chronic/immunology , Pancreatitis, Chronic/pathology , Plant Oils/pharmacology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Sex Factors , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Protein p53/metabolism
18.
Anal Chem ; 88(10): 5281-9, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27065343

ABSTRACT

In research and clinical settings, formalin-fixed and paraffin-embedded (FFPE) tissue specimens are collected routinely and therefore this material constitutes a highly valuable source to gather insight in metabolic changes of diseases. Among mass spectrometry techniques to examine the molecular content of FFPE tissue, mass spectrometry imaging (MSI) is the most appropriate when morphological and histological features are to be related to metabolic information. Currently, high-resolution mass spectrometers are widely used for metabolomics studies. However, with regards to matrix-assisted laser desorption/ionization (MALDI) MSI, no study has so far addressed the necessity of instrumental mass resolving power in terms of clinical diagnosis and prognosis using archived FFPE tissue. For this matter we performed for the first time a comprehensive comparison between a high mass resolution Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer and a time-of-flight (TOF) instrument with lower mass resolving power. Spectra analysis revealed that about one-third of the detected peaks remained unresolved by MALDI-TOF, which led to a 3-5 times lower number of m/z features compared to FTICR measurements. Overlaid peak information and background noise in TOF images made a precise assignment of molecular attributes to morphological features more difficult and limited classification approaches. This clearly demonstrates the need for high-mass resolution capabilities for metabolite imaging. Nevertheless, MALDI-TOF allowed reproducing and verifying individual markers identified previously by MALDI-FTICR MSI. The systematic comparison gives rise to a synergistic combination of the different MSI platforms for high-throughput discovery and validation of biomarkers.


Subject(s)
Colonic Neoplasms/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Biomarkers/analysis , Colonic Neoplasms/mortality , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Formaldehyde/chemistry , Fourier Analysis , Humans , Image Processing, Computer-Assisted , Metabolomics , Paraffin Embedding , Survival Rate
19.
Histochem Cell Biol ; 145(2): 201-11, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26645566

ABSTRACT

Given the importance of pirfenidone as the first worldwide-approved drug for idiopathic pulmonary fibrosis treatment, its pharmacodynamic properties and the metabolic response to pirfenidone treatment have not been fully elucidated. The aim of the present study was to get molecular insights of pirfenidone-related pharmacometabolomic response using MALDI-FTICR-MSI. Quantitative MALDI-FTICR-MSI was carried out for determining the pharmacokinetic properties of pirfenidone and its related metabolites 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone in lung, liver and kidney. To monitor the effect of pirfenidone administration on endogenous cell metabolism, additional in situ endogenous metabolite imaging was performed in lung tissue sections. While pirfenidone is highly abundant and delocalized across the whole micro-regions of lung, kidney and liver, 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone demonstrate heterogeneous distribution patterns in lung and kidney. In situ endogenous metabolite imaging study of lung tissue indicates no significant effects of pirfenidone on metabolic pathways. Remarkably, we found 129 discriminative m/z values which represent clear differences between control and treated lungs, the majority of which are currently unknown. PCA analysis and heatmap view can accurately distinguish control and treated groups. This is the first pharmacokinetic study to investigate the tissue distribution of orally administered pirfenidone and its related metabolites simultaneously in organs without labeling. The combination of pharmametabolome with histological features provides detailed mapping of drug effects on metabolism as response of healthy lung tissue to pirfenidone treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Pyridones/metabolism , Pyridones/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Anti-Inflammatory Agents, Non-Steroidal/analysis , Female , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Mice , Mice, Inbred C57BL , Pyridones/analysis , Tissue Distribution
20.
Plant Physiol ; 168(3): 859-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25975835

ABSTRACT

Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes.


Subject(s)
Butadienes/metabolism , Gene Knockdown Techniques , Hemiterpenes/metabolism , Lipids/chemistry , Pentanes/metabolism , Populus/metabolism , Populus/ultrastructure , Thylakoids/metabolism , Thylakoids/ultrastructure , Chlorophyll/metabolism , Fatty Acids/metabolism , Fluorescence , Least-Squares Analysis , Malondialdehyde/metabolism , Models, Biological , Multivariate Analysis , Oxidation-Reduction , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL