Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 583(7815): 237-241, 2020 07.
Article in English | MEDLINE | ID: mdl-32641813

ABSTRACT

Technologies such as batteries, biomaterials and heterogeneous catalysts have functions that are defined by mixtures of molecular and mesoscale components. As yet, this multi-length-scale complexity cannot be fully captured by atomistic simulations, and the design of such materials from first principles is still rare1-5. Likewise, experimental complexity scales exponentially with the number of variables, restricting most searches to narrow areas of materials space. Robots can assist in experimental searches6-14 but their widespread adoption in materials research is challenging because of the diversity of sample types, operations, instruments and measurements required. Here we use a mobile robot to search for improved photocatalysts for hydrogen production from water15. The robot operated autonomously over eight days, performing 688 experiments within a ten-variable experimental space, driven by a batched Bayesian search algorithm16-18. This autonomous search identified photocatalyst mixtures that were six times more active than the initial formulations, selecting beneficial components and deselecting negative ones. Our strategy uses a dexterous19,20 free-roaming robot21-24, automating the researcher rather than the instruments. This modular approach could be deployed in conventional laboratories for a range of research problems beyond photocatalysis.

2.
Faraday Discuss ; 250(0): 251-262, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37965718

ABSTRACT

Conversion of solar energy into chemical fuel can be achieved through a number of routes but direct conversion, via photocatalysis, is potentially the simplest and cheapest route to the transformation of low-value substances, water and CO2, to useful chemical fuels or feedstocks such as hydrogen, formate, methanol, and syngas. 2D polymers, including carbon nitrides and COFs, have emerged as one of the most promising classes of organic photocatalysts for solar fuels production due to their energetic tunability, charge transport properties and robustness. They are, however, difficult to process and so there have been limited studies into the formation of heterojunction materials incorporating these components. In this work we use our novel templating approach to combine topologically matched imine-based donor polymers with acceptor polymers formed through Knoevenagel condensation. An efficient heterojunction interface was formed by matching the isostructural nodes and linkers that make up the D1 and A1 semiconductors and this was reflected in the increased photocatalytic activity of the heterojunction material T1. Tuning of the templating synthesis route to give heterojunctions with optimised donor : acceptor ratios, as well as the photocatalytic conditions, resulted in CO production rates that were between 1.5 and 10 times higher than those of the individual polymers. A further set of polymers A5 and D5 were developed with more optimised structures for CO2 reduction including increased overpotential for the reduction reaction and the presence of co-catalyst chelating groups. These had increased activity compared to the group 1 family and again showed higher activity for CO production by the templated heterojunction, T5, than either individual component or a physical mixture of the donor and acceptor.

3.
J Am Chem Soc ; 142(34): 14574-14587, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32786800

ABSTRACT

Semiconducting polymers are versatile materials for solar energy conversion and have gained popularity as photocatalysts for sunlight-driven hydrogen production. Organic polymers often contain residual metal impurities such as palladium (Pd) clusters that are formed during the polymerization reaction, and there is increasing evidence for a catalytic role of such metal clusters in polymer photocatalysts. Using transient and operando optical spectroscopy on nanoparticles of F8BT, P3HT, and the dibenzo[b,d]thiophene sulfone homopolymer P10, we demonstrate how differences in the time scale of electron transfer to Pd clusters translate into hydrogen evolution activity optima at different residual Pd concentrations. For F8BT nanoparticles with common Pd concentrations of >1000 ppm (>0.1 wt %), we find that residual Pd clusters quench photogenerated excitons via energy and electron transfer on the femto-nanosecond time scale, thus outcompeting reductive quenching. We spectroscopically identify reduced Pd clusters in our F8BT nanoparticles from the microsecond time scale onward and show that the predominant location of long-lived electrons gradually shifts to the F8BT polymer when the Pd content is lowered. While a low yield of long-lived electrons limits the hydrogen evolution activity of F8BT, P10 exhibits a substantially higher hydrogen evolution activity, which we demonstrate results from higher yields of long-lived electrons due to more efficient reductive quenching. Surprisingly, and despite the higher performance of P10, long-lived electrons reside on the P10 polymer rather than on the Pd clusters in P10 particles, even at very high Pd concentrations of 27000 ppm (2.7 wt %). In contrast, long-lived electrons in F8BT already reside on Pd clusters before the typical time scale of hydrogen evolution. This comparison shows that P10 exhibits efficient reductive quenching but slow electron transfer to residual Pd clusters, whereas the opposite is the case for F8BT. These findings suggest that the development of even more efficient polymer photocatalysts must target materials that combine both rapid reductive quenching and rapid charge transfer to a metal-based cocatalyst.

4.
Angew Chem Int Ed Engl ; 59(42): 18695-18700, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32596879

ABSTRACT

The first examples of linear conjugated organic polymer photocatalysts that produce oxygen from water after loading with cobalt and in the presence of an electron scavenger are reported. The oxygen evolution rates, which are higher than for related organic materials, can be rationalized by a combination of the thermodynamic driving force for water oxidation, the light absorption of the polymer, and the aqueous dispersibility of the relatively hydrophilic polymer particles. We also used transient absorption spectroscopy to study the best performing system and we found that fast oxidative quenching of the exciton occurs (picoseconds) in the presence of an electron scavenger, minimizing recombination.

9.
J Am Chem Soc ; 140(49): 16952-16956, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30465601

ABSTRACT

Two differently protected aldehydes, A and B, were demonstrated to deprotect selectively through the application of light and heat, respectively. In the presence of iron(II) and a triamine, two distinct FeII4L4 cages, 1 and 2, were thus observed to form from the deprotected A and B, respectively. The alkyl tails of B and 2 render them preferentially soluble in cyclopentane, whereas A and 1 remain in acetonitrile. The stimulus applied (either light or heat) thus determines the outcome of self-assembly and dictates whether the cage and its ferrocene cargo remain in acetonitrile, or transport into cyclopentane. Cage self-assembly and cargo transport between phases can in this fashion be programmed using orthogonal stimuli.

10.
J Am Chem Soc ; 139(18): 6294-6297, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28426930

ABSTRACT

Subcomponent exchange transformed new high-spin FeII4L4 cage 1 into previously-reported low-spin FeII4L4 cage 2: 2-formyl-6-methylpyridine was ejected in favor of the less sterically hindered 2-formylpyridine, with concomitant high- to low-spin transition of the cage's FeII centers. High-spin 1 also reacted more readily with electron-rich anilines than 2, enabling the design of a system consisting of two cages that could release their guests in response to combinations of different stimuli. The addition of p-anisidine to a mixture of high-spin 1 and previously-reported low-spin FeII4L6 cage 3 resulted in the destruction of 1 and the release of its guest. However, initial addition of 2-formylpyridine to an identical mixture of 1 and 3 resulted in the transformation of 1 into 2; added p-anisidine then reacted preferentially with 3 releasing its guest. The addition of 2-formylpyridine thus modulated the system's behavior, fundamentally altering its response to the subsequent signal p-anisidine.

14.
Chem Mater ; 36(4): 1781-1792, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38435046

ABSTRACT

This work discusses the use of donor and acceptor materials from organic photovoltaics in solar fuel applications. These two routes to solar energy conversion have many shared materials design parameters, and in recent years there has been increasing overlap of the molecules and polymers used in each. Here, we examine whether this is a good approach, where knowledge can be translated, and where further consideration to molecular design is required.

15.
J Mater Chem B ; 11(12): 2684-2692, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36883480

ABSTRACT

Hydrogenases are microbial metalloenzymes capable of catalyzing the reversible interconversion between molecular hydrogen and protons with high efficiency, and have great potential in the development of new electrocatalysts for renewable fuel production. Here, we engineered the intact proteinaceous shell of the carboxysome, a self-assembling protein organelle for CO2 fixation in cyanobacteria and proteobacteria, and sequestered heterologously produced [NiFe]-hydrogenases into the carboxysome shell. The protein-based hybrid catalyst produced in E. coli shows substantially improved hydrogen production under both aerobic and anaerobic conditions and enhanced material and functional robustness, compared to unencapsulated [NiFe]-hydrogenases. The catalytically functional nanoreactor as well as the self-assembling and encapsulation strategies provide a framework for engineering new bioinspired electrocatalysts to improve the sustainable production of fuels and chemicals in biotechnological and chemical applications.


Subject(s)
Cyanobacteria , Hydrogenase , Hydrogenase/genetics , Hydrogenase/chemistry , Hydrogenase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Catalysis , Hydrogen/chemistry
16.
Adv Mater ; : e2300037, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165538

ABSTRACT

2D polymers have emerged as one of the most promising classes of organic photocatalysts for solar fuel production due to their tunability, charge-transport properties, and robustness. They are however difficult to process and so there are limited studies into the formation of heterojunction materials incorporating these components. In this work, a novel templating approach is used to combine an imine-based donor polymer and an acceptor polymer formed through Knoevenagel condensation. Heterojunction formation is shown to be highly dependent on the topological match of the donor and acceptor polymers with the most active templated material found to be between three and nine times more active for photocatalysis than its constituent components. Transient absorption spectroscopy reveals that this improvement is due to faster charge separation and more efficient charge extraction in the templated heterojunction. The templated material shows a very high hydrogen evolution rate of >20 mmol h-1 m-2 with an ascorbic acid hole scavenger but also produces hydrogen in the presence of only water and a cobalt-based redox mediator. This suggests the improved charge-separation interface and reduced trapping accessed through this approach could be suitable for Z-scheme formation.

17.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301872

ABSTRACT

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Subject(s)
Carbon Dioxide , Polymers , Copper , Carbon Monoxide , Porosity
18.
Nat Commun ; 13(1): 7964, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575179

ABSTRACT

Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer's molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.

19.
Nanoscale ; 13(2): 634-646, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33393561

ABSTRACT

Photocatalytic hydrogen production from water has the potential to fulfil future energy needs by producing a clean and storable fuel. In recent years polymer photocatalysts have attracted significant interest in an attempt to address these challenges. One reason organic photocatalysts have been considered an attractive target is their synthetic modularity, therefore, the ability to tune their opto-electronic properties by incorporating different building blocks. A wide range of factors has been investigated and in particular nano-sized particles have found to be highly efficient due to the size effect resulting from the ability of these to increase the number of charges reaching catalytic sites.

20.
ACS Appl Polym Mater ; 3(2): 765-776, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615231

ABSTRACT

Hydrogen fuel can contribute as a masterpiece in conceiving a robust carbon-free economic puzzle if cleaner methods to produce hydrogen become technically efficient and economically viable. Organic photocatalytic materials such as conjugated microporous materials (CMPs) are potential attractive candidates for water splitting as their energy levels and optical band gap as well as porosity are tunable through chemical synthesis. The performances of CMPs depend also on the mass transfer of reactants, intermediates, and products. Here, we study the mass transfer of water (H2O and D2O) and of triethylamine, which is used as a hole scavenger for hydrogen evolution, by means of neutron spectroscopy. We find that the stiffness of the nodes of the CMPs is correlated with an increase in trapped water, reflected by motions too slow to be quantified by quasi-elastic neutron scattering (QENS). Our study highlights that the addition of the polar sulfone group results in additional interactions between water and the CMP, as evidenced by inelastic neutron scattering (INS), leading to changes in the translational diffusion of water, as determined from the QENS measurements. No changes in triethylamine motions could be observed within the CMPs from the present investigations.

SELECTION OF CITATIONS
SEARCH DETAIL