Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters

Publication year range
1.
Annu Rev Neurosci ; 43: 355-374, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32109184

ABSTRACT

Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.


Subject(s)
Analgesics, Opioid/therapeutic use , Chronic Pain/drug therapy , Depression/drug therapy , Opioid-Related Disorders/drug therapy , Animals , Drug Overdose/drug therapy , Humans , Precision Medicine/methods
2.
Nature ; 604(7906): 509-516, 2022 04.
Article in English | MEDLINE | ID: mdl-35396579

ABSTRACT

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Subject(s)
Mutation , Neurodevelopmental Disorders , Schizophrenia , Case-Control Studies , Exome , Genetic Predisposition to Disease/genetics , Humans , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/genetics
3.
Proc Natl Acad Sci U S A ; 120(49): e2305779120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011555

ABSTRACT

Using a longitudinal approach, we sought to define the interplay between genetic and nongenetic factors in shaping vulnerability or resilience to COVID-19 pandemic stress, as indexed by the emergence of symptoms of depression and/or anxiety. University of Michigan freshmen were characterized at baseline using multiple psychological instruments. Subjects were genotyped, and a polygenic risk score for depression (MDD-PRS) was calculated. Daily physical activity and sleep were captured. Subjects were sampled at multiple time points throughout the freshman year on clinical rating scales, including GAD-7 and PHQ-9 for anxiety and depression, respectively. Two cohorts (2019 to 2021) were compared to a pre-COVID-19 cohort to assess the impact of the pandemic. Across cohorts, 26 to 40% of freshmen developed symptoms of anxiety or depression (N = 331). Depression symptoms significantly increased in the pandemic years and became more chronic, especially in females. Physical activity was reduced, and sleep was increased by the pandemic, and this correlated with the emergence of mood symptoms. While low MDD-PRS predicted lower risk for depression during a typical freshman year, this genetic advantage vanished during the pandemic. Indeed, females with lower genetic risk accounted for the majority of the pandemic-induced rise in depression. We developed a model that explained approximately half of the variance in follow-up depression scores based on psychological trait and state characteristics at baseline and contributed to resilience in genetically vulnerable subjects. We discuss the concept of multiple types of resilience, and the interplay between genetic, sex, and psychological factors in shaping the affective response to different types of stressors.


Subject(s)
COVID-19 , Pandemics , Female , Humans , COVID-19/epidemiology , COVID-19/genetics , Anxiety/epidemiology , Anxiety/genetics , Anxiety Disorders , Affect , Depression/epidemiology , Depression/genetics
4.
J Neurosci ; 43(44): 7376-7392, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37709540

ABSTRACT

The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.


Subject(s)
Cues , Motivation , Rats , Male , Animals , Dopaminergic Neurons , Rats, Sprague-Dawley , Dopamine , Rats, Long-Evans , Reward
5.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717230

ABSTRACT

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Subject(s)
Heroin Dependence , Heroin , Rats , Male , Female , Animals , Heroin/pharmacology , Analgesics, Opioid/pharmacology , Nucleus Accumbens , Receptors, Opioid/metabolism , Rats, Transgenic , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Pain/metabolism
6.
Mol Psychiatry ; 26(9): 5239-5250, 2021 09.
Article in English | MEDLINE | ID: mdl-33483695

ABSTRACT

Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.


Subject(s)
Bipolar Disorder , Schizophrenia , Bipolar Disorder/genetics , Exome/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics
7.
Proc Natl Acad Sci U S A ; 116(26): 13107-13115, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182603

ABSTRACT

Artificially selected model organisms can reveal hidden features of the genetic architecture of the complex disorders that they model. Addictions are disease phenotypes caused by different intermediate phenotypes and pathways and thereby are potentially highly polygenic. High responder (bHR) and low responder (bLR) rat lines have been selectively bred (b) for exploratory locomotion (EL), a behavioral phenotype correlated with novelty-seeking, impulsive response to reward, and vulnerability to addiction, and is inversely correlated with spontaneous anxiety and depression-like behaviors. The rapid response to selection indicates loci of large effect for EL. Using exome sequencing of HR and LR rats, we identified alleles in gene-coding regions that segregate between the two lines. Quantitative trait locus (QTL) analysis in F2 rats derived from a bHR × bLR intercross confirmed that these regions harbored genes affecting EL. The combined effects of the seven genome-wide significant QTLs accounted for approximately one-third of the total variance in EL, and two-thirds of the variance attributable to genetic factors, consistent with an oligogenic architecture of EL estimated both from the phenotypic distribution of F2 animals and rapid response to selection. Genetic association in humans linked APBA2, the ortholog of the gene at the center of the strongest QTL, with substance use disorders and related behavioral phenotypes. Our finding is also convergent with molecular and animal behavioral studies implicating Apba2 in locomotion. These results provide multilevel evidence for genes/loci influencing EL. They shed light on the genetic architecture of oligogenicity in animals artificially selected for a phenotype modeling a more complex disorder in humans.


Subject(s)
Behavior, Addictive/genetics , Cadherins/genetics , Exploratory Behavior/physiology , Locomotion/genetics , Nerve Tissue Proteins/genetics , Substance-Related Disorders/genetics , Animals , Behavior, Addictive/physiopathology , Behavior, Animal/physiology , Carrier Proteins/genetics , Case-Control Studies , Disease Models, Animal , Female , Finland , Genetic Predisposition to Disease , Genotyping Techniques , Humans , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Rats , Reward , Exome Sequencing
8.
J Neurosci ; 40(1): 12-21, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31896560

ABSTRACT

Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.


Subject(s)
Brain/physiology , Glucocorticoids/physiology , Mood Disorders/physiopathology , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Adaptation, Physiological/physiology , Animals , Endocannabinoids/physiology , Epigenesis, Genetic , Feedback, Physiological , Fibroblast Growth Factor 2/physiology , Fibroblast Growth Factor 2/therapeutic use , Gene Expression Regulation/physiology , Hormones/physiology , Humans , Hypothalamo-Hypophyseal System/physiology , Intercellular Signaling Peptides and Proteins/physiology , Life Change Events , Models, Neurological , Models, Psychological , Mood Disorders/etiology , Mood Disorders/psychology , Nerve Tissue Proteins/physiology , Neuronal Plasticity , Pituitary-Adrenal System/physiology , Psychophysiology , Receptors, Cell Surface/physiology , Social Determinants of Health
9.
Stress ; 24(3): 251-260, 2021 05.
Article in English | MEDLINE | ID: mdl-32748678

ABSTRACT

Stress during adolescence has profound effects on the onset and severity of substance use later in life. However, not everyone with adverse experiences during this period will go on to develop a substance use disorder in adulthood, and the factors that alter susceptibility to substance use remain unknown. Here, we investigated individual differences in response to stress and drugs of abuse using our selectively bred high-responder (bHR) and low-responder (bLR) rats. These animals model extremes of temperamental tendencies and differ dramatically in both stress responsiveness and addiction-related traits. The present study investigated how environmental interventions in the form of a chronic variable stress (CVS) regimen in early adolescence interact with the bHR/bLR phenotype to alter behavioral sensitization to cocaine in adulthood. We also determined whether accumbal dopamine signaling is involved in the interaction of stress history and cocaine by assessing the mRNA levels of dopamine D1 (D1R) and D2 (D2R) receptors. Our results showed that CVS history alone had enduring and phenotype-specific effects on accumbal dopamine signaling. Importantly, adolescent stress had opposing effects in the two lines- decreasing the locomotor response to cocaine challenge in bHRs but increasing this measure in bLRs. Moreover, these opposing effects on cocaine sensitivity following adolescent CVS were accompanied by parallel effects in the accumbal dopamine system, with prior stress and cocaine exposure interacting to decrease D2R mRNA in bHRs but increase it in bLRs. Overall, these findings indicate that environmental challenges encountered in adolescence interact with genetic background to alter vulnerability to cocaine later in life.Lay SummaryStress experienced during adolescence affects the onset and severity of drug dependence later in life. However, not everyone with adverse experiences during this period will go on to develop SUD in adulthood. Using a rat model of innate differences in emotional reactivity, this study shows that the interplay between individual temperament and previous experience of adolescent stress/trauma determines whether an individual will be vulnerable or resilient to develop SUDs later in life. In addition, the present study shows that the dopamine D2 receptor in the brain's reward center, nucleus accumbens, may be implicated in this interplay.


Subject(s)
Cocaine , Animals , Dopamine , Individuality , Nucleus Accumbens , Rats , Rats, Sprague-Dawley , Stress, Psychological
10.
Nucleic Acids Res ; 47(10): e59, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30869147

ABSTRACT

Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp 'common deletion' was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns-Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.


Subject(s)
Computational Biology/methods , DNA, Mitochondrial/genetics , Depressive Disorder, Major/genetics , RNA Splice Sites/genetics , Sequence Analysis, RNA/methods , Sequence Deletion , Algorithms , Base Sequence , Brain/metabolism , Brain/pathology , DNA Breaks , DNA, Mitochondrial/chemistry , Depressive Disorder, Major/blood , Female , Humans , Male , Polymerase Chain Reaction
12.
Proc Natl Acad Sci U S A ; 115(40): E9489-E9498, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224492

ABSTRACT

Two classes of peptide-producing neurons in the arcuate nucleus (Arc) of the hypothalamus are known to exert opposing actions on feeding: the anorexigenic neurons that express proopiomelanocortin (POMC) and the orexigenic neurons that express agouti-related protein (AgRP) and neuropeptide Y (NPY). These neurons are thought to arise from a common embryonic progenitor, but our anatomical and functional understanding of the interplay of these two peptidergic systems that contribute to the control of feeding remains incomplete. The present study uses a combination of optogenetic stimulation with viral and transgenic approaches, coupled with neural activity mapping and brain transparency visualization to demonstrate the following: (i) selective activation of Arc POMC neurons inhibits food consumption rapidly in unsated animals; (ii) activation of Arc neurons arising from POMC-expressing progenitors, including POMC and a subset of AgRP neurons, triggers robust feeding behavior, even in the face of satiety signals from POMC neurons; (iii) the opposing effects on food intake are associated with distinct neuronal projection and activation patterns of adult hypothalamic POMC neurons versus Arc neurons derived from POMC-expressing lineages; and (iv) the increased food intake following the activation of orexigenic neurons derived from POMC-expressing progenitors engages an extensive neural network that involves the endogenous opioid system. Together, these findings shed further light on the dynamic balance between two peptidergic systems in the moment-to-moment regulation of feeding behavior.


Subject(s)
Agouti Signaling Protein/biosynthesis , Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior/physiology , Neurons/metabolism , Neuropeptide Y/biosynthesis , Pro-Opiomelanocortin/biosynthesis , Signal Transduction/physiology , Agouti Signaling Protein/genetics , Animals , Arcuate Nucleus of Hypothalamus/cytology , Feeding Behavior/psychology , Mice , Mice, Transgenic , Neurons/cytology , Neuropeptide Y/genetics , Pro-Opiomelanocortin/genetics
13.
J Neurosci ; 39(16): 3144-3158, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30683683

ABSTRACT

There is growing evidence of abnormal epigenetic processes playing a role in the neurobiology of psychiatric disorders, although the precise nature of these anomalies remains largely unknown. To study neurobiological (including epigenetic) factors that influence emotionality, we use rats bred for distinct behavioral responses to novelty. Rats bred for low novelty response (low responder [LR]) exhibit high levels of anxiety- and depressive-like behavior compared with high novelty responder (HR) rats. Prior work revealed distinct limbic brain development in HR versus LR rats, including altered expression of genes involved in DNA methylation. This led us to hypothesize that DNA methylation differences in the developing brain drive the disparate HR/LR neurobehavioral phenotypes. Here we report altered DNA methylation markers (altered DNA methyltransferase protein levels and increased global DNA methylation levels) in the early postnatal amygdala of LR versus HR male rats. Next-generation sequencing methylome profiling identified numerous differentially methylated regions across the genome in the early postnatal HR/LR amygdala. We also contrasted methylation profiles of male HRs and LRs with a control rat strain that displays an intermediate behavioral phenotype relative to the HR/LR extremes; this revealed that the LR amygdalar methylome was abnormal, with the HR profile more closely resembling that of the control group. Finally, through two methylation manipulations in early life, we found that decreasing DNA methylation in the developing male and female amygdala improves adult anxiety- and depression-like behavior. These findings suggest that inborn DNA methylation differences play important roles in shaping brain development and lifelong emotional behavior.SIGNIFICANCE STATEMENT Epigenetic changes are biological mechanisms that regulate the expression and function of genes throughout the brain and body. DNA methylation, one type of epigenetic mechanism, is known to be altered in brains of psychiatric patients, which suggests a role for DNA methylation in the pathogenesis of psychiatric disorders, such as depression and anxiety. The present study examines brains of rats that display high versus low levels of anxiety- and depression-like behavior to investigate how neural DNA methylation levels differ in these animals and how such differences shape their emotional behavioral differences. Studying how epigenetic processes affect emotional behavior may improve our understanding of the neurobiology of psychiatric disorders and lead to improved treatments.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , DNA Methylation , Hippocampus/metabolism , Amygdala/growth & development , Animals , Anxiety/genetics , Disease Models, Animal , Female , High-Throughput Nucleotide Sequencing , Hippocampus/growth & development , Male , Phenotype , Rats
14.
J Immunol ; 200(9): 3188-3200, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29563178

ABSTRACT

Sepsis commonly results in acute and chronic brain dysfunction, which dramatically increases the morbidity associated with this common disease. Chronic brain dysfunction in animal models of sepsis survival is linked to persistent neuroinflammation and expression of multiple cytokines. However, we have found previously that microglia predominantly upregulate the damage associated molecule S100A8/A9 after sepsis. In this article, we show that S100A8/A9 is increased in the brains of patients who died of sepsis and that S100A8 is expressed in astrocytes and myeloid cells. Using a mouse model of sepsis survival, we show that S100A8/A9 is persistently expressed in the brain after sepsis. S100A9 expression is necessary for recruitment of neutrophils to the brain and for priming production of reactive oxygen species and TNF-α secretion in microglia and macrophages. However, despite improving these indices of chronic inflammation, S100A9 deficiency results in worsened anxiety-like behavior 2 wk after sepsis. Taken together, these results indicate that S100A8/A9 contributes to several facets of neuroinflammation in sepsis survivor mice, including granulocyte recruitment and priming of microglial-reactive oxygen species and cytokine production, and that these processes may be protective against anxiety behavior in sepsis survivors.


Subject(s)
Brain Injuries/etiology , Calgranulin A/metabolism , Calgranulin B/metabolism , Neuroimmunomodulation/physiology , Sepsis/complications , Animals , Anxiety/etiology , Anxiety/metabolism , Behavior, Animal/physiology , Brain Injuries/immunology , Brain Injuries/metabolism , Calgranulin A/immunology , Calgranulin B/immunology , Humans , Mice , Mice, Inbred C57BL , Sepsis/immunology , Sepsis/metabolism
15.
Horm Behav ; 111: 131-134, 2019 05.
Article in English | MEDLINE | ID: mdl-30448249

ABSTRACT

All organisms endure frequent challenges to homeostasis, or stressors, that require adaptation. Depending on the individual, the context, and the magnitude of stress, this active adaptation can lead to behavioral susceptibility or resilience. The latter is an under-appreciated consequence of stress, as the damaging effects of chronic stress and chronically elevated glucocorticoids have received much more attention. We suggest here that neural pathways promoting resilience are initiated at the time of stress, and that they involve glucocorticoid signaling. By focusing on the neurobiology of resilience induction and the identification of vulnerable individuals, we may be able to intervene in the future at the time of stress to promote positive adaptation.


Subject(s)
Adaptation, Physiological/physiology , Glucocorticoids/blood , Resilience, Psychological , Stress, Psychological , Animals , Glucocorticoids/physiology , Homeostasis/physiology , Humans , Neural Pathways/drug effects , Neural Pathways/physiology , Stress, Psychological/blood , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
16.
Horm Behav ; 114: 104541, 2019 08.
Article in English | MEDLINE | ID: mdl-31220462

ABSTRACT

For basic research, rodents are often housed in individual cages prior to behavioral testing. However, aspects of the experimental design, such as duration of isolation and timing of animal manipulation, may unintentionally introduce variance into collected data. Thus, we examined temporal correlates of acclimation of C57Bl/6J mice to single housing in a novel environment following two commonly used experimental time periods (7 or 14 days, SH7 or SH14). We measured circulating stress hormones (adrenocorticotropic hormone and corticosterone), basally or after injection stress, hippocampal gene expression of transcripts implicated in stress and affect regulation: the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), including the MR/GR ratio, and fibroblast growth factor 2 (FGF2). We also measured signaling in the mammalian target of rapamycin (mTOR) pathway. The basal elevation of stress hormones in the SH14 group is accompanied by a blunting in the circadian rhythms of GR and FGF2 hippocampal gene expression, and the MR/GR ratio, that is observed in SH7 mice. Following mild stress, the endocrine response and hippocampal mTOR pathway signaling are decreased in the SH14 mice. These neural and endocrine changes at 14 days of single housing likely underlie increased anxiety-like behavior measured in an elevated plus maze test. We conclude that multiple measures of stress responsiveness change dynamically between one and two weeks of single housing. The ramifications of these alterations should be considered when designing animal experiments since such hidden sources of variance might cause lack of replicability and misinterpretation of data.


Subject(s)
Acclimatization/physiology , Anxiety , Brain/metabolism , Hormones/metabolism , Housing, Animal , Adrenocorticotropic Hormone/metabolism , Animals , Anxiety/genetics , Anxiety/metabolism , Corticosterone/metabolism , Gene Expression , Hippocampus/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Signal Transduction/genetics
17.
Proc Natl Acad Sci U S A ; 113(20): E2861-70, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27114539

ABSTRACT

This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with "temperament," including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor.


Subject(s)
Cocaine-Related Disorders/genetics , Epigenesis, Genetic , Nucleus Accumbens/metabolism , Animals , Cocaine-Related Disorders/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Gene Expression , Male , Rats , Receptors, Dopamine D2/metabolism , Self Medication
18.
Semin Cell Dev Biol ; 53: 136-43, 2016 05.
Article in English | MEDLINE | ID: mdl-26454097

ABSTRACT

The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling.


Subject(s)
Fibroblast Growth Factors/metabolism , Mental Disorders/metabolism , Nervous System Diseases/metabolism , Signal Transduction , Animals , Humans , Molecular Targeted Therapy , Receptors, Fibroblast Growth Factor/metabolism
19.
J Neurochem ; 145(3): 188-203, 2018 05.
Article in English | MEDLINE | ID: mdl-29168882

ABSTRACT

Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are post-mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.


Subject(s)
Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation/physiology , Neurons/metabolism , Cell Line , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Embryonic Stem Cells , Humans , Induced Pluripotent Stem Cells
20.
Proc Natl Acad Sci U S A ; 112(38): 11953-8, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351673

ABSTRACT

Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.


Subject(s)
Affect , Fibroblast Growth Factor 9/metabolism , Adult , Affect/drug effects , Aged , Aged, 80 and over , Animals , Anxiety/complications , Anxiety/metabolism , Avoidance Learning/drug effects , Case-Control Studies , Demography , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Depressive Disorder, Major/complications , Depressive Disorder, Major/metabolism , Female , Fibroblast Growth Factor 9/administration & dosage , Fibroblast Growth Factor 9/genetics , Fibroblast Growth Factor 9/pharmacology , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Lentivirus/metabolism , Male , Microinjections , Middle Aged , Postmortem Changes , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Stress, Psychological/complications , Stress, Psychological/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL