Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Ann Neurol ; 90(4): 640-652, 2021 10.
Article in English | MEDLINE | ID: mdl-34338329

ABSTRACT

OBJECTIVE: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS: We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS: AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION: Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021;90:640-652.


Subject(s)
Genetic Therapy , Mitochondria/metabolism , Mitochondrial Myopathies/therapy , Thymidine Kinase/deficiency , Animals , Compassionate Use Trials , DNA, Mitochondrial/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Myopathies/genetics , Mutation/genetics , Thymidine/genetics , Thymidine/metabolism , Thymidine Kinase/genetics
2.
J Inherit Metab Dis ; 44(3): 534-543, 2021 05.
Article in English | MEDLINE | ID: mdl-33141444

ABSTRACT

Adult polyglucosan body disease (APBD) represents a complex autosomal recessive inherited neurometabolic disorder due to homozygous or compound heterozygous pathogenic variants in GBE1 gene, resulting in deficiency of glycogen-branching enzyme and secondary storage of glycogen in the form of polyglucosan bodies, involving the skeletal muscle, diaphragm, peripheral nerve (including autonomic fibers), brain white matter, spinal cord, nerve roots, cerebellum, brainstem and to a lesser extent heart, lung, kidney, and liver cells. The diversity of new clinical presentations regarding neuromuscular involvement is astonishing and transformed APBD in a key differential diagnosis of completely different clinical conditions, including axonal and demyelinating sensorimotor polyneuropathy, progressive spastic paraparesis, motor neuronopathy presentations, autonomic disturbances, leukodystrophies or even pure myopathic involvement with limb-girdle pattern of weakness. This review article aims to summarize the main clinical, biochemical, genetic, and diagnostic aspects regarding APBD with special focus on neuromuscular presentations.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease/genetics , Glycogen Storage Disease/physiopathology , Nervous System Diseases/genetics , Nervous System Diseases/physiopathology , Adult , Brain/pathology , Glycogen Storage Disease/pathology , Humans , Muscle, Skeletal/pathology , Nervous System Diseases/pathology , Peripheral Nerves/pathology , Phenotype , Spinal Cord/pathology
3.
Muscle Nerve ; 53(6): 976-81, 2016 06.
Article in English | MEDLINE | ID: mdl-26789422

ABSTRACT

INTRODUCTION: Adult polyglucosan body disease (APBD) usually presents with progressive spastic paraparesis, neurogenic bladder, and distal lower limb sensory abnormalities. It is caused by mutations in the glycogen branching enzyme gene (GBE1). METHODS: We describe a woman with an unusual phenotype manifesting as progressive left brachial more than lumbosacral plexopathies, with central sensory and corticospinal tract involvement. RESULTS: Magnetic resonance imaging of the brain and cervical spine showed abnormal T2 signal within the ventral pons and medulla bilaterally, involving the pyramidal tracts and the medial leminisci. There was also medullary and cervical spine atrophy. On nerve biopsy, large polyglucosan bodies were noted in the endoneurium. The patient was found to be compound heterozygous for 2 novel mutations in GBE1. Peripheral blood leukocyte GBE activity was markedly reduced to 7% of normal, confirming the diagnosis of APBD. CONCLUSIONS: In this report we describe a new phenotype of APBD associated with 2 novel mutations. Muscle Nerve 53: 976-981, 2016.


Subject(s)
Disease Progression , Functional Laterality/physiology , Glycogen Storage Disease/physiopathology , Nervous System Diseases/physiopathology , Neural Conduction/physiology , DNA Mutational Analysis , Female , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease/diagnostic imaging , Glycogen Storage Disease/genetics , Humans , Magnetic Resonance Imaging , Middle Aged , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/genetics , RNA, Messenger/metabolism , Reaction Time/physiology , Sural Nerve/pathology
4.
Muscle Nerve ; 51(4): 609-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25287355

ABSTRACT

INTRODUCTION: The PNPLA2 gene encodes the enzyme adipose triglyceride lipase (ATGL), which catalyzes the first step of triglyceride hydrolysis. Mutations in this gene are associated with an autosomal recessive lipid-storage myopathy, neutral lipid-storage disease with myopathy (NLSD-M). RESULTS: A 72-year-old woman had late-onset myopathy, with mild weakness, cramps, and exercise intolerance. Electromyography showed myotonic discharges. A few leukocytes showed lipid droplets (Jordan anomaly). Deltoid and quadriceps muscle biopsies showed no lipid storage. Genetic analysis of PNPLA2 detected 2 heterozygous mutations: c.497A>G (p.Asp166Gly) in exon 5 and c.1442C>T (p.Pro481Leu) in exon 10. Expression of mutant PNPLA2 plasmids in HeLa cells resulted in impaired enzyme activity, confirming the pathological effects of the mutations. CONCLUSIONS: In this case of NLSD-M, the myopathy may be due to a metabolic defect rather than to a mechanical effect of lipid storage. This suggests that more than 1 mechanism contributes to muscle damage in NLSD-M.


Subject(s)
Lipase/genetics , Lipid Metabolism, Inborn Errors/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Dystrophies/genetics , Mutation/genetics , Aged , Biopsy , Female , Heterozygote , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Muscular Diseases/diagnosis , Muscular Dystrophies/diagnosis
5.
Ther Adv Rare Dis ; 5: 26330040241227452, 2024.
Article in English | MEDLINE | ID: mdl-38445267

ABSTRACT

Background: Adult Polyglucosan Body Disease (APBD) is an ultra-rare, genetic neurodegenerative disorder caused by autosomal recessive mutations in the glycogen branching enzyme gene. Knowledge of the demographic and clinical characteristics of APBD patients and the natural history of the disease is lacking. We report here initial results from a patient-reported registry of APBD patients. Objectives: (1) Maximize the quality of the APBD Registry survey data; (2) provide an initial report on APBD disease progression and natural history using these data; and (3) specify next steps in the process for testing potential new therapies. Design: Data are from members of the APBD Research Foundation (New York), surveyed from 2014 by the Columbia APBD Patient/Family (CAP) Registry. Inclusion criteria are: disease onset at age 18+ and progressive clinical triad of peripheral neuropathy, spasticity, and neurogenic bladder. Methods: Genetic testing results were used when available. Respondents found to not have APBD in clinical records were excluded. All changes and exclusions were recorded in a database edit log. Results are reported in frequency tables, bar graphs, time plots, and heat maps. Results: The 96 respondents meeting inclusion criteria were predominantly (96.8%) White, highly educated (89.3% at least some college education), and mostly (85.1%) of Ashkenazi Jewish descent. 57.1% had at least one parent born in the United States, with at least one grandparent from Europe (excluding Russia; 75.4%), the United States (42.1%), or Russia (33.3%). 37.2% reported a family history of APBD, and 33.3% had an affected sibling. Median APBD onset age was 51 [Interquartile range (IQR) 11], and median age of diagnosis 57 (IQR 10.5). The 75 reported prior misdiagnoses were mainly peripheral neuropathy (43, 60.6%) and spinal stenosis (11, 15.1%). Conclusion: Although from a demographically constricted survey, the results provide basic clinical information for future studies to develop treatments for APBD.


A United States based patient-reported adult polyglucosan body disease registry: initial results Adult Polyglucosan Body Disease, or APBD, is an ultra-rare neurological disorder caused by mutations of the GBE1 gene. While potential therapies exist, to establish if they work we need a "natural history" study that shows the normal path of the disease. Our goal was to provide the first patient-reported natural history study of APBD. We analyzed survey data from 96 patients recruited by the APBD Research Foundation (New York), aged 18 or older, who self-reported having APBD. We maximized data quality by using results from genetic testing when these were available, and by excluding respondents if we could not review clinical records confirming they had APBD. More than 95% of our 96 patients were white. They were highly educated: 89% had at least some college education. Most (85%) were of Ashkenazi Jewish descent. More than half (57.1%) had a parent born in the United States. Many had at least one grandparent from Europe (excluding Russia) (75.4%), the United States (42.1%), or Russia (33.3%). More than a third (37%) reported a family history of APBD, and a third reported that they had a brother or a sister with a history of the disease. Their average age at APBD onset was 51, and their average age at APBD diagnosis was 57. Previous misdiagnoses were common: 75 were reported. Most were for peripheral neuropathy (60.6%) or spinal stenosis (16.7%). Although our data come from a survey of patients who are demographically similar, they provide a report on the characteristics of patients with APBD and basic information that is essential for studies to develop treatments for the disease.

6.
J Neurochem ; 127(1): 101-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23607684

ABSTRACT

Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.1.18) expression using lentiviruses harboring short hairpin RNA (shRNA). GBE1 suppression in embryonic cortical neurons led to polyglucosan accumulation and associated apoptosis, which were reversible by rapamycin or starvation treatments. Further analysis revealed that rapamycin and starvation led to phosphorylation and inactivation of glycogen synthase (GS, EC 2.4.1.11), dephosphorylated and activated in the GBE1-suppressed neurons. These protective effects of rapamycin and starvation were reversed by overexpression of phosphorylation site mutant GS only if its glycogen binding site was intact. While rapamycin and starvation induce autophagy, autophagic maturation was not required for their corrective effects, which prevailed even if autophagic flux was inhibited by vinblastine. Furthermore, polyglucosans were not observed in any compartment along the autophagic pathway. Our data suggest that glycogen branching enzyme repression in glycogenoses can cause pathogenic polyglucosan buildup, which might be corrected by GS inhibition.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/drug effects , Glucans/toxicity , Glycogen Synthase/antagonists & inhibitors , Neurotoxicity Syndromes/enzymology , Neurotoxicity Syndromes/prevention & control , 1,4-alpha-Glucan Branching Enzyme/genetics , Adenosine Triphosphate/metabolism , Aged , Animals , Apoptosis/drug effects , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Enzyme Inhibitors , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycogen Storage Disease/metabolism , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Microscopy, Fluorescence , Neurotoxicity Syndromes/genetics , Phosphorylation , Primary Cell Culture , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , Rats , Real-Time Polymerase Chain Reaction , Starvation/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transduction, Genetic
7.
Neurobiol Dis ; 54: 349-61, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23333625

ABSTRACT

Autism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage. Mitochondrial membrane mass was higher in ASD brain, as indicated by higher protein levels of mitochondrial membrane proteins Tom20, Tim23 and porin. No differences were observed in either mitochondrial DNA or levels of the mitochondrial gene transcription factor TFAM or cofactor PGC1α, indicating that a mechanism other than alterations in mitochondrial genome or mitochondrial biogenesis underlies these mitochondrial abnormalities. We further identified higher levels of the mitochondrial fission proteins (Fis1 and Drp1) and decreased levels of the fusion proteins (Mfn1, Mfn2 and Opa1) in ASD patients, indicating altered mitochondrial dynamics in ASD brain. Many of these changes were evident in cortical pyramidal neurons, and were observed in ASD children but were less pronounced or absent in adult patients. Together, these findings provide evidence that mitochondrial function and intracellular redox status are compromised in pyramidal neurons in ASD brain and that mitochondrial dysfunction occurs during early childhood when ASD symptoms appear.


Subject(s)
Autistic Disorder/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Temporal Lobe/metabolism , Adolescent , Adult , Autistic Disorder/pathology , Blotting, Western , Child , Child, Preschool , Electron Transport Chain Complex Proteins/analysis , Electron Transport Chain Complex Proteins/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Temporal Lobe/pathology , Young Adult
8.
J Neurol ; 269(6): 2854-2861, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34999962

ABSTRACT

Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically. Using exome sequencing, we identified two previously unreported bi-allelic missense GBE1 variants in a patient with severe memory impairment along with the typical non-cognitive symptoms. We were able to confirm a reduction of GBE1 activity in blood lymphocytes. To characterize the neuropsychological profile of patients suffering from APBD, we conducted a systematic review of cognitive impairment in this rare disease. Analysis of 24 cases and case series (in total 58 patients) showed that executive deficits and memory impairment are the most common cognitive symptoms in APBD.


Subject(s)
Cognitive Dysfunction , Glycogen Storage Disease , Nervous System Diseases , Cognitive Dysfunction/genetics , Glycogen Storage Disease/genetics , Humans , Mutation, Missense
9.
Clin Cancer Res ; 28(9): 1881-1895, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35417530

ABSTRACT

PURPOSE: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. EXPERIMENTAL DESIGN: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. RESULTS: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. CONCLUSIONS: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.


Subject(s)
Glioblastoma , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Peptide Hydrolases/genetics , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
10.
Nat Commun ; 12(1): 5203, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471141

ABSTRACT

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was accompanied by an increase of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Combining AURKA inhibitors with inhibitors of FAO extends overall survival in orthotopic GBM PDX models. Taken together, these data suggest that simultaneous targeting of oxidative metabolism and AURKAi might be a potential novel therapy against recalcitrant malignancies.


Subject(s)
Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Warburg Effect, Oncologic , Cell Line, Tumor , Cell Proliferation , Fatty Acids/metabolism , Glycolysis/drug effects , Humans , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proteomics , Signal Transduction/drug effects , Transcriptome , Warburg Effect, Oncologic/drug effects
11.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34486811

ABSTRACT

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Subject(s)
Glycogen Storage Disease , Nervous System Diseases , Animals , Glucans , Glycogen , Mice
13.
Muscle Nerve ; 32(5): 675-81, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16007674

ABSTRACT

A 62-year-old man developed progressive gait instability, bladder dysfunction, proximal weakness, distal sensory loss, and mild cognitive impairment over 6 years. Neurologic examination revealed upper and lower motor neuron dysfunction in the lower extremities, with distal sensory loss. Electrodiagnostic studies, magnetic resonance imaging of the brain, and sural nerve biopsy were consistent with adult polyglucosan body disease. Biochemical and genetic analyses demonstrated reduced glycogen brancher enzyme levels associated with a heterozygous point mutation (Tyr329Ser or Y329S) in the glycogen brancher enzyme gene on chromosome 3. Mutational heterozygosity in the glycogen brancher enzyme gene has not been previously reported as a cause for this rare disease. A review of the clinical presentation, pathogenesis, etiology, and diagnosis of this disease is presented.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/deficiency , Brain/pathology , Glucans/metabolism , Glycogen Storage Disease Type IV/diagnosis , Glycogen Storage Disease Type IV/enzymology , Inclusion Bodies , 1,4-alpha-Glucan Branching Enzyme/genetics , Aged , Base Sequence , Chromosomes, Human, Pair 3 , Diagnosis, Differential , Glycogen Storage Disease Type IV/complications , Glycogen Storage Disease Type IV/pathology , Heterozygote , Humans , Jews , Magnetic Resonance Imaging , Male , Molecular Sequence Data , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL