Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Horm Metab Res ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471571

ABSTRACT

Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.

2.
J Cell Mol Med ; 26(16): 4556-4565, 2022 08.
Article in English | MEDLINE | ID: mdl-35810384

ABSTRACT

Radiation-induced oral mucositis is a common and dose-limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti-inflammatory and anti-cancer effects. In this study, we investigated the effect of sildenafil on radiation-induced mucositis in rats. Two doses of radiation (8 and 26 Gy X-ray) were used to induce low-grade and high-grade oral mucositis, separately. A control group and three groups of sildenafil citrate-treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF-κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1ß, IL6 and TNF-α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF-κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high-dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high-dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation-induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.


Subject(s)
NF-kappa B , Stomatitis , Animals , Apoptosis , NF-kappa B/metabolism , Oxidative Stress , Rats , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Stomatitis/drug therapy , Stomatitis/etiology , Stomatitis/metabolism
3.
Cell Physiol Biochem ; 56(S1): 24-35, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35263537

ABSTRACT

BACKGROUND/AIMS: Colitis is a main presentation of inflammatory bowel disease (IBD) and yet, has no definitive cure. Currently, corticosteroids, anti-tumor necrosis factor (anti-TNF) agents and 5-aminosalicylic acid derivatives are prescribed for management of colitis. Except their failure rate, they are not always tolerated because of their severe adverse effects. Additive formulas with fewer adverse effects may improve the treatment of colitis. METHODS: In this study, colitis was induced with intra-rectal injection of three concentrations of acetic acid (4, 6 and 8 v/v). Each group received sodium selenite (0.5 mg/kg) or saline, gavaged on days 0 and 1 for treatment. Two days after induction of colitis, rats were sacrificed and the end part of their colons were resected for macroscopic and microscopic evaluation and molecular measurement. RESULTS: Sodium selenite improved macroscopic and microscopic view of the colon, decreased cryptitis, crypt abscess and inflammatory cells infiltration and partly maintained mucosal structure. Sodium selenite markedly reduced tissue levels of malondialdehyde (MDA), TNF-α and interferon γ (INF-γ) and decreased myeloperoxidase (MPO) activity. Treatment with sodium selenite also significantly downregulated IL17, IL22, indoleamine 2,3-dioxygenase (IDO1), and kynurenine levels. Western blotting revealed that sodium selenite prevented apoptosis by increasing bcl2/Bax ratio. Furthermore, our findings showed that sodium selenite significantly downregulated the upstream inflammatory molecules such as nuclear factor kappa B (NF-κB) and toll-like receptor 4 (TLR4) in colitis. CONCLUSION: These findings show that sodium selenite alleviates inflammatory response and oxidative stress and protects against colitis.


Subject(s)
Colitis , NF-kappa B , Acetic Acid/toxicity , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/metabolism , Kynurenine/metabolism , Kynurenine/pharmacology , Kynurenine/therapeutic use , NF-kappa B/metabolism , Rats , Signal Transduction , Sodium Selenite/metabolism , Sodium Selenite/pharmacology , Sodium Selenite/therapeutic use , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor Inhibitors
4.
J Cell Physiol ; 236(9): 6115-6135, 2021 09.
Article in English | MEDLINE | ID: mdl-33559160

ABSTRACT

Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.


Subject(s)
Aquaporins/metabolism , Disease , Disease Progression , Humans , Inflammation/metabolism , Inflammation/pathology , Models, Biological , Neoplasms/metabolism , Neoplasms/pathology
5.
Drug Dev Res ; 82(7): 896-906, 2021 11.
Article in English | MEDLINE | ID: mdl-33792938

ABSTRACT

Sumatriptan is the first available medication from triptans family that was approved by the U.S. Food and Drug Administration for migraine attacks and cluster headaches in 1991. Most of its action is mediated by selective 5-HT1B/1D receptor agonism. Recent investigations raised the possibility of repositioning of this drug to other indications beyond migraine, as increasing evidence suggests for an anti-inflammatory property of sumatriptan. We performed a literature search using PubMed, Web of Science, Scopus, and Google Scholar using "inflammation AND sumatriptan" or "inflammation AND 5HT1B/D" as the keywords. Then, articles were screened for their relevance and those directly discussing the correlation between inflammation and sumatriptan or 5HT1B/D were included. Total references reviewed or inclusion/exclusion were 340 retrieved full-text articles (n = 340), then based on critical assessment 66 of them were included in this systematic review. Our literature review indicates that at low doses, sumatriptan can reduce inflammatory markers (e.g., interleukin-1ß, tumor necrosis factor-α, and nuclear factor-κB), affects caspases and changes cells lifespan. Additionally, nitric oxide synthase and nitric oxide signaling seem to be regulated by this drug. It also inhibits the release of calcitonin gene-related peptide. Sumatriptan protects against many inflammatory conditions including cardiac and mesenteric ischemia/reperfusion, skin flap, pruritus, peripheral, and central nervous system injuries such as spinal cord injury, testicular torsion-detorsion, oral mucositis, and other experimental models. Considering the safety and potency of low dose sumatriptan compared to corticosteroids and other immunosuppressive medications, it is worth to take advantage of sumatriptan in inflammatory conditions.


Subject(s)
Migraine Disorders , Sumatriptan , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/drug therapy , Migraine Disorders/drug therapy , Sumatriptan/pharmacology , Sumatriptan/therapeutic use , Tumor Necrosis Factor-alpha , United States
6.
J Surg Res ; 246: 519-526, 2020 02.
Article in English | MEDLINE | ID: mdl-31630884

ABSTRACT

Sodium valproate interacts with biological systems through different mechanisms such as activation of gamma-aminobutyric acid (GABA)-sensitive chloride channels and inhibition of histone deacetylase. In this study, we examined the effect of sodium valproate in random-pattern skin flap of rats and investigated its mechanisms of action. Different types of experiments were carried out. In acute treatment, different doses of sodium valproate (50, 100, 150, 300 mg/kg) were injected intraperitoneally 1 h before surgery. In chronic treatment, the substance was injected each day for 2 wk. The size of skin necrosis was measured 1 wk after the surgery. The rate of secondary healing, amount of weight gain, hair growth, and wound regeneration were measured 2 wk after operation. In acute treatment, sodium valproate (100 mg/kg) reduced significantly the length of skin necrosis (P < 0.05). Administration of bicuculline (competitive antagonist of GABAA, 20 mg/kg) increased the length of skin necrosis (P < 0.05). In addition, administration of 100 mg/kg of sodium valproate and subeffective dose of bicuculline (10 mg/kg) prevented the protective effect of sodium valproate on skin flap necrosis (P < 0.05). In the chronically treated skin flap group, 100 mg/kg of sodium valproate reduced the length of necrosis (P < 0.01). Weight gain in the valproate group was more than that in the control group (P < 0.05). Skin also healed faster in the sodium valproate group than in the control group (P < 0.001). Combination therapy of sodium valproate and trichostatin A (330 nmol/kg) reversed the effect of valproate (P < 0.05). This study demonstrate that sodium valproate accelerates skin secondary healing in a rat model of skin flap probably through a GABA and histone deacetylase-dependent mechanism.


Subject(s)
Graft Survival/drug effects , Histone Deacetylases/metabolism , Surgical Flaps/transplantation , Valproic Acid/administration & dosage , gamma-Aminobutyric Acid/metabolism , Animals , Disease Models, Animal , Humans , Injections, Intraperitoneal , Male , Necrosis/etiology , Necrosis/pathology , Necrosis/prevention & control , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Surgical Flaps/adverse effects , Wound Healing/drug effects
7.
Orphanet J Rare Dis ; 19(1): 175, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671465

ABSTRACT

Polycystic liver disease (PLD) is a rare condition observed in three genetic diseases, including autosomal dominant polycystic liver disease (ADPLD), autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). PLD usually does not impair liver function, and advanced PLD becomes symptomatic when the enlarged liver compresses adjacent organs or increases intra-abdominal pressure. Currently, the diagnosis of PLD is mainly based on imaging, and genetic testing is not required except for complex cases. Besides, genetic testing may help predict patients' prognosis, classify patients for genetic intervention, and conduct early treatment. Although the underlying genetic causes and mechanisms are not fully understood, previous studies refer to primary ciliopathy or impaired ciliogenesis as the main culprit. Primarily, PLD occurs due to defective ciliogenesis and ineffective endoplasmic reticulum quality control. Specifically, loss of function mutations of genes that are directly involved in ciliogenesis, such as Pkd1, Pkd2, Pkhd1, and Dzip1l, can lead to both hepatic and renal cystogenesis in ADPKD and ARPKD. In addition, loss of function mutations of genes that are involved in endoplasmic reticulum quality control and protein folding, trafficking, and maturation, such as PRKCSH, Sec63, ALG8, ALG9, GANAB, and SEC61B, can impair the production and function of polycystin1 (PC1) and polycystin 2 (PC2) or facilitate their degradation and indirectly promote isolated hepatic cystogenesis or concurrent hepatic and renal cystogenesis. Recently, it was shown that mutations of LRP5, which impairs canonical Wnt signaling, can lead to hepatic cystogenesis. PLD is currently treated by somatostatin analogs, percutaneous intervention, surgical fenestration, resection, and liver transplantation. In addition, based on the underlying molecular mechanisms and signaling pathways, several investigational treatments have been used in preclinical studies, some of which have shown promising results. This review discusses the clinical manifestation, complications, prevalence, genetic basis, and treatment of PLD and explains the investigational methods of treatment and future research direction, which can be beneficial for researchers and clinicians interested in PLD.


Subject(s)
Cysts , Liver Diseases , Humans , Liver Diseases/genetics , Cysts/genetics , Mutation/genetics
8.
J Diabetes Res ; 2023: 8776878, 2023.
Article in English | MEDLINE | ID: mdl-36818747

ABSTRACT

Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-ß)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , AMP-Activated Protein Kinases/metabolism , Biology , Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , NF-E2-Related Factor 2/metabolism , Podocytes/metabolism , Signal Transduction , Sestrins/metabolism , Humans
9.
Ageing Res Rev ; 89: 101980, 2023 08.
Article in English | MEDLINE | ID: mdl-37302757

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.


Subject(s)
Exosomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Humans , Exosomes/metabolism , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocardium/metabolism , Mesenchymal Stem Cells/metabolism
10.
Obes Rev ; 24(6): e13563, 2023 06.
Article in English | MEDLINE | ID: mdl-36951144

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a growing health concern that is closely related to obesity and metabolic syndrome. In particular, NAFLD has been increasingly reported in adolescents and young adults in recent years. Cardiovascular diseases (CVDs) such as cardiac remodeling, heart failure, myocardial infarction, valvular heart diseases, and arrhythmia are more common in patients with NAFLD. CVD are the major cause of mortality in NAFLD. Although NAFLD often affects patients with obesity/overweight, it can also affect subjects with normal body mass index (BMI), known as lean NAFLD, which has a strong correlation with CVD. Obesity imposes a considerably increased risk of NAFLD and CVD. Consistently, weight-lowering approaches that can pronouncedly decrease body weight and maintain it in the long term, such as bariatric surgery and treatment with semaglutide and tirzepatide, have been promising in alleviating both CVD and NAFLD. Interestingly, compared with patients with NAFLD and obesity, a minimal amount of weight loss resolves NAFLD in lean patients. Besides the widespread use of bariatric surgery, the development of new GLP-1 agonists and GLP-1 GIP agonists revolutionized the treatment of obesity in recent years. Here, we discuss the interwoven correlation between obesity, NAFLD, and CVD and the benefits of weight-lowering approaches.


Subject(s)
Cardiovascular Diseases , Non-alcoholic Fatty Liver Disease , Adolescent , Young Adult , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Obesity/complications , Weight Loss , Glucagon-Like Peptide 1
11.
Parkinsons Dis ; 2023: 2893662, 2023.
Article in English | MEDLINE | ID: mdl-37664790

ABSTRACT

Introduction: Despite remarkable progress in identifying Parkinson's disease (PD) genetic risk loci, the genetic basis of PD remains largely unknown. With the help of the endophenotype approach and using data from dopamine transporter single-photon emission computerized tomography (DaTscan), we identified potentially involved genes in PD. Method: We conducted an imaging genetic study by performing exome-wide association study (EWAS) and genome-wide association study (GWAS) on the specific binding ratio (SBR) of six DaTscan anatomical areas between 489 and 559 subjects of Parkinson's progression markers initiative (PPMI) cohort and 83,623 and 36,845 single-nucleotide polymorphisms (SNPs)/insertion-deletion mutations (INDELs). We also investigated the association of cerebrospinal fluid (CSF) protein concentration of our significant genes with PD progression using PPMI CSF proteome data. Results: Among 83,623 SNPs/INDELs in EWAS, one SNP (rs201465075) on 1 q32.1 locus was significantly (P value = 4.03 × 10-7) associated with left caudate DaTscan SBR, and 33 SNPs were suggestive. Among 36,845 SNPs in GWAS, one SNP (rs12450112) on 17 p.12 locus was significantly (P value = 1.34 × 10-6) associated with right anterior putamen DaTscan SBR, and 39 SNPs were suggestive among which 8 SNPs were intergenic. We found that rs201465075 and rs12450112 are most likely related to IGFN1 and MAP2K4 genes. The protein level of MAP2K4 in the CSF was significantly associated with PD progression in the PPMI cohort; however, proteomic data were not available for the IGFN1 gene. Conclusion: We have shown that particular variants of IGFN1 and MAP2K4 genes may be associated with PD. Since DaTscan imaging could be positive in other Parkinsonian syndromes, caution should be taken when interpreting our results. Future experimental studies are also needed to verify these findings.

12.
Biomed Pharmacother ; 165: 115104, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393866

ABSTRACT

Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Immunotherapy/methods , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Antineoplastic Agents/therapeutic use , Cytokines/metabolism
13.
Front Endocrinol (Lausanne) ; 14: 1202560, 2023.
Article in English | MEDLINE | ID: mdl-37476491

ABSTRACT

Background: Male infertility is a multifaceted issue that has gained scientific interest due to its increasing rate. Studies have demonstrated that oxidative stress is involved in male infertility development. Furthermore, metabolic disorders, including obesity, diabetes, hypo- and hyperthyroidism, are risk factors for male infertility, and oxidative stress is believed to contribute to this association. Melatonin, functioning as an oxidative scavenger, may represent a promising therapeutic approach for the prevention and treatment of metabolic disorder-associated male infertility. Material and methods: We systematically searched three online databases (PubMed, Scopus, and Web of Science) for studies that evaluated the effects of melatonin therapy on metabolic disorders-induce infertility in male rodents. The favorable outcomes were histopathological parameters of testicular tissue, reproductive hormones, and markers of oxidative stress. Then, meta-analyses were done for each outcome. The results are reported as standardized mean difference (Cohen's d) and 95% confidence interval. Results: 24 studies with 31 outcomes were included. Rats and mice were the subjects. Studies have employed obesity, diabetes, hypothyroidism, hyperthyroidism, hyperlipidemia, and food deprivation as metabolic disorders. To induce these disorders, a high-fat diet, high-fructose diet, leptin, streptozotocin, alloxan, carbimazole, and levothyroxine were used. The outcomes included histopathologic characteristics (abnormal sperm morphology, apoptotic cells, apoptotic index, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular basement membrane thickness, tubular diameter, sperm count, and motility), weight-related measurements (absolute epididymis, testis, and body weight, body weight gain, epididymal adipose tissue weight, and relative testis to body weight), hormonal characteristics (androgen receptor expression, serum FSH, LH, and testosterone level), markers of oxidative stress (tissue and serum GPx and MDA activity, tissue CAT, GSH, and SOD activity), and exploratory outcomes (serum HDL, LDL, total cholesterol, triglyceride, and blood glucose level). The overall pooled effect sizes were statistically significant for all histopathological characteristics and some markers of oxidative stress. Conclusions: Melatonin can reduce damage to male rodents' gonadal tissue and improve sperm count, motility, and morphology in metabolic diseases. Future clinical studies and randomized controlled trials are needed to evaluate the safety and effectiveness of melatonin for male infertility in patients with metabolic diseases.


Subject(s)
Diabetes Mellitus , Hyperthyroidism , Infertility, Male , Melatonin , Metabolic Diseases , Animals , Male , Mice , Rats , Body Weight , Diabetes Mellitus/metabolism , Hyperthyroidism/metabolism , Infertility, Male/drug therapy , Infertility, Male/etiology , Infertility, Male/prevention & control , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/complications , Obesity/complications , Obesity/drug therapy , Oxidative Stress , Rodentia , Semen , Testis/metabolism
14.
Pharmacol Rep ; 75(3): 623-633, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36920684

ABSTRACT

BACKGROUND: Mesenteric ischemia has remained without effective pharmacological management for many years. Sumatriptan, an abortive medication for migraine and cluster headaches, has potent anti-inflammatory properties and ameliorated organ ischemia in previous animal studies. Similarly, inhibition of the kynurenine pathway ameliorated renal and myocardial ischemia/reperfusion (I/R) in many preclinical studies. Herein, we assessed the effect of sumatriptan on experimental mesenteric I/R and investigated whether kynurenine pathway inhibition is a mechanism underlying its action. METHODS: Ischemia was induced by ligating the origin of the superior mesenteric artery (SMA) and its anastomosis with the inferior mesenteric artery (IMA) with bulldog clamps for 30 min. Ischemia was followed by 1 h of reperfusion. Sumatriptan (0.1, 0.3, and 1 mg/kg ip) was injected 5 min before the reperfusion phase, 1-methyltryptophan (1-MT) (100 mg/kg iv) was used to inhibit kynurenine production. At the end of the reperfusion phase, samples were collected from the jejunum of rats for H&E staining and molecular assessments. RESULTS: Sumatriptan improved the integrity of intestinal mucosa after I/R, and 0.1 mg/kg was the most effective dose of sumatriptan in this study. Sumatriptan decreased the increased levels of TNF-α, kynurenine, and p-ERK but did not change the decreased levels of NO. Furthermore, sumatriptan significantly increased the decreased ratio of Bcl2/Bax. Similarly, 1-MT significantly decreased TNF-α and kynurenine and protected against mucosal damage. CONCLUSIONS: This study demonstrated that sumatriptan has protective effects against mesenteric ischemia and the kynurenine inhibition is potentially involved in this process. Therefore, it can be assumed that sumatriptan has the potential to be repurposed as a treatment for acute mesenteric ischemia.


Subject(s)
Mesenteric Ischemia , Reperfusion Injury , Rats , Animals , Mesenteric Ischemia/drug therapy , Sumatriptan/pharmacology , Sumatriptan/therapeutic use , Kynurenine , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha , Ischemia
15.
Photobiomodul Photomed Laser Surg ; 41(11): 622-631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37890115

ABSTRACT

Background: Oral mucositis (OM) is a common adverse effect of radiation to the head and neck. Recent research has shown that extra oral photobiomodulation (EO-PBM) reduces the severity of OM. However, appropriate EO-PBM therapy parameters for OM severity reduction have not been documented. Objective: This work aims to optimize EO-PBM radiation parameters for lowering the severity of radiation-induced OM in rats by establishing a photobiomodulation (PBM) treatment system based on light-emitting diode arrays with top-hat beam profile. Methods: The 36 rats are separated into 2 control groups and 4 groups receiving PBM treatment. The PBM groups are exposed to irradiance between 4 and 24 J/cm2 at 660 nm. The cheek pouch mucosa is removed after scarification for biochemical and histological examination. Student's t-test, and one-way analysis of variance (ANOVA) followed by Tukey's Multiple were applied to compare the statistical significance of differences between control groups and PBM treatment groups. Results: Statistical analysis reveals that PBM irradiation at 12 J/cm2 (200 sec) with a flatness of 0.8 and a diameter of 3 cm substantially decreased the level of inflammatory cytokines compared with the positive control group. Conclusions: Our results indicate that the designed treatment PBM system is capable of delivering the optical parameters necessary for therapeutic treatment.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Low-Level Light Therapy , Stomatitis , Rats , Animals , Stomatitis/etiology , Stomatitis/radiotherapy , Low-Level Light Therapy/methods , Cytokines
16.
Sci Rep ; 13(1): 12401, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524849

ABSTRACT

The term "geriatric giants" refers to the chronic disabilities of senescence leading to adverse health outcomes. This study aimed to investigate the prevalence and predictors of geriatric giants in Southern Iran. The participants were selected from Bushehr city using a multistage cluster random sampling method. Demographic data were collected through interviews. Frailty, incontinence, immobility, depression, cognitive impairment, and malnutrition were measured by questionnaires and instruments. Finally, data from 2392 participants were analyzed. The prevalence of fecal incontinence was less than 1% among all participants and similar in men and women. In contrast, compared with men, women had higher prevalence of urinary incontinence (36.44% vs. 17.65%), depression (39.05% vs. 12.89%), anorexia and malnutrition (2.35% vs. 0.82%), immobility (8.00% vs. 2.5%), frailty (16.84 vs. 7.34), and pre-frailty (54.19 vs. 38.63%). The prevalence of dependence and cognitive impairment was also higher in women and considerably increased with the age of participants. In total, 12.07% of subjects were frail, and 46.76% were pre-frail. The prevalence of frailty exponentially increased in older age, ranging from 4.18% among those aged 60-64 years to 57.35% in those aged ≥ 80 years. Considering 95% confidence interval (CI), multivariate logistic regression revealed that low physical activity [odds ratio (OR) 31.73 (18.44-54.60)], cancer (OR 3.28 (1.27-8.44)), depression [OR 2.42 (1.97-2.98)], age [OR 1.11 (1.08-1.14)], waist circumference [OR 1.03 (1.01-1.06)], BMI [OR 1.07 (1.01-1.14)], MNA score [OR 0.85 (0.79-0.92)], polypharmacy [OR 2.26 (1.30-3.95)] and male gender [OR 0.63 (0.42-0.93)] were independently associated with frailty. White blood cell count (WBC), smoking, marital status, and number of comorbidities were not independently associated with frailty. Low physical activity was the strongest predictor of frailty, which may need more attention in geriatric care. Frailty, its predictors, and other components of geriatric giants were considerably more common among women and older ages.


Subject(s)
Frailty , Malnutrition , Aged , Humans , Male , Female , Frailty/complications , Cross-Sectional Studies , Prevalence , Independent Living , Geriatric Assessment/methods , Malnutrition/epidemiology , Middle East
17.
Curr Diabetes Rev ; 18(8): e051121197762, 2022.
Article in English | MEDLINE | ID: mdl-34749618

ABSTRACT

Metformin is an old, inexpensive, and relatively safe anti-diabetic medication that can decrease the risk of several types of cancer in patients with diabetes. Recent meta-analyses have revealed that metformin markedly decreased the incidence of colorectal adenoma, advanced adenoma, and colorectal cancer (CRC) among patients with diabetes. Potential mechanisms by which metformin may decrease colorectal cancer risk include its effects on ameliorating intestinal inflammation and dysbiosis, suppressing major proliferative pathways, preventing DNA replication, accelerating tumor cells apoptosis, inhibiting intra-tumor angiogenesis and epithelial-mesenchymal transition (EMT), increasing tumor-infiltrating lymphocytes and CD68+ tumor-associated macrophages, and enhancing T cells cytotoxic activity. It is well-known that metformin can improve overall survival and CRC-specific survival among patients with diabetes and CRC. Interestingly, metformin decreases the incidence of colonic adenoma in patients with acromegaly and reduces the incidence of inflammatory bowel disease (IBD) among patients with diabetes, which can indirectly lower the risk of CRC. Results of phase II clinical trials have revealed that metformin can enhance the anti-cancer effects of chemotherapeutic agents, such as 5-Fluorouracil (5-FU) and irinotecan on refractory CRC. Furthermore, metformin decreases the risk of new polyps and adenomas in patients without diabetes. Regarding the results of previous preclinical and clinical studies, it is rational to assess the effect of metformin in normoglycemic patients with CRC and expand its clinical application for treating CRC or preventing it in a high-risk population.


Subject(s)
Adenoma , Colorectal Neoplasms , Metformin , Adenoma/epidemiology , Adenoma/pathology , Adenoma/prevention & control , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/prevention & control , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Incidence , Metformin/pharmacology , Metformin/therapeutic use
18.
Cancer Biol Ther ; 23(1): 34-50, 2022 12 31.
Article in English | MEDLINE | ID: mdl-34978469

ABSTRACT

C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins c-myc , Cell Line, Tumor , Humans , Oncogenes , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pancreatic Neoplasms
19.
Int Rev Immunol ; 41(3): 326-345, 2022.
Article in English | MEDLINE | ID: mdl-34289794

ABSTRACT

Tryptophan is an essential amino acid, going through three different metabolic pathways in the intestines. Indole pathway in the gut microbiota, serotonin system in the enterochromaffin cells and kynurenine pathway in the immune cells and intestinal lining are the three arms of tryptophan metabolism in the intestines. Clinical, in vivo and in vitro studies showed that each one of these arms has a significant impact on IBD. This review explains how different metabolites of tryptophan are involved in the pathophysiology of IBD and colorectal cancer, as a major complication of IBD. Indole metabolites alleviate colitis and protect against colorectal cancer while serotonin arm follows a more complicated and receptor-specific pattern. Indole metabolites and kynurenine interact with aryl hydrocarbon receptor (AHR) to induce T regulatory cells differentiation, confine Th17 and Th1 response and produce anti-inflammatory mediators. Kynurenine decreases tumor-infiltrating CD8+ cells and mediates tumor cells immune evasion. Serotonin system also increases colorectal cancer cells proliferation and metastasis while, indole metabolites can profoundly decrease colorectal cancer growth. Targeted therapy for tryptophan metabolites may improve the management of IBD and colorectal cancer, e.g. supplementation of indole metabolites such as indole-3-carbinol (I3C), inhibition of kynurenine monooxygenase (KMO) and selective stimulation or inhibition of specific serotonergic receptors can mitigate colitis. Furthermore, it will be explained how indole metabolites supplementation, inhibition of indoleamine 2,3-dioxygenase 1 (IDO1), KMO and serotonin receptors can protect against colorectal cancer. Additionally, extensive molecular interactions between tryptophan metabolites and intracellular signaling pathways will be thoroughly discussed.


Subject(s)
Colitis , Colorectal Neoplasms , Inflammatory Bowel Diseases , Colitis/drug therapy , Colitis/metabolism , Humans , Indoles/metabolism , Indoles/therapeutic use , Inflammatory Bowel Diseases/metabolism , Kynurenine/metabolism , Kynurenine/therapeutic use , Serotonin/metabolism , Serotonin/therapeutic use , Th17 Cells , Tryptophan/metabolism , Tryptophan/therapeutic use
20.
Biomark Res ; 10(1): 29, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35527284

ABSTRACT

Sestrin2 is a conserved antioxidant, metabolism regulator, and downstream of P53. Sestrin2 can suppress oxidative stress and inflammation, thereby preventing the development and progression of cancer. However, Sestrin2 attenuates severe oxidative stress by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby enhancing cancer cells survival and chemoresistance. Sestrin2 inhibits endoplasmic reticulum stress and activates autophagy and apoptosis in cancer cells. Attenuation of endoplasmic reticulum stress and augmentation of autophagy hinders cancer development but can either expedite or impede cancer progression under specific conditions. Furthermore, Sestrin2 can vigorously inhibit oncogenic signaling pathways through downregulation of mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1-alpha (HIF-1α). Conversely, Sestrin2 decreases the cytotoxic activity of T cells and natural killer cells which helps tumor cells immune evasion. Sestrin2 can enhance tumor cells viability in stress conditions such as glucose or glutamine deficiency. Cancer cells can also upregulate Sestrin2 during chemotherapy or radiotherapy to attenuate severe oxidative stress and ER stress, augment autophagy and resist the treatment. Recent studies unveiled that Sestrin2 is involved in the development and progression of several types of human cancer. The effect of Sestrin2 may differ depending on the type of tumor, for instance, several studies revealed that Sestrin2 protects against colorectal cancer, whereas results are controversial regarding lung cancer. Furthermore, Sestrin2 expression correlates with metastasis and survival in several types of human cancer such as colorectal cancer, lung cancer, and hepatocellular carcinoma. Targeted therapy for Sestrin2 or regulation of its expression by new techniques such as non-coding RNAs delivery and vector systems may improve cancer chemotherapy and overcome chemoresistance, metastasis and immune evasion that should be investigated by future trials.

SELECTION OF CITATIONS
SEARCH DETAIL