Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int Microbiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767683

ABSTRACT

In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.

2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054793

ABSTRACT

Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.


Subject(s)
Blood Platelets/metabolism , Plants, Edible/chemistry , Animals , Clinical Trials as Topic , Fungi/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platelet Function Tests
3.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242657

ABSTRACT

Cardiovascular diseases represent a major cause of mortality and morbidity in the world, and specifically, thrombotic conditions such as heart attacks and strokes are caused by unwarranted activation of platelets and subsequent formation of blood clots (thrombi) within the blood vessels during pathological circumstances. Therefore, platelets act as a primary therapeutic target to treat and prevent thrombotic conditions. Current treatments are limited due to intolerance, and they are associated with severe side effects such as bleeding complications. Hence, the development of novel therapeutic strategies for thrombotic diseases is an urgent priority. Flavonoids are naturally occurring plant-derived molecules that exert numerous beneficial effects in humans through modulating the functions of distinct cell types. However, naturally occurring flavonoids suffer from several issues such as poor solubility, lipophilicity, and bioavailability, which hinder their efficacy and potency. Despite these, flavonoids act as versatile templates for the design and synthesis of novel molecules for various therapeutic targets. Indeed, several synthetic flavonoids have recently been developed to improve their stability, bioavailability, and efficacy, including for the modulation of platelet function. Here, we provide insight into the actions of certain natural flavonoids along with the advantages of synthetic flavonoids in the modulation of platelet function, haemostasis, and thrombosis.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Thrombosis/drug therapy , Thrombosis/metabolism , Animals , Biological Availability , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Blood Coagulation/drug effects , Flavonoids/chemical synthesis , Flavonoids/chemistry , Humans , Thrombosis/blood , Treatment Outcome
4.
J Microbiol Biotechnol ; 34(8): 1-11, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-39049476

ABSTRACT

Arctium lappa (Burdock) root is used in various culinary applications especially in Asian Cuisine. Arctigenin (ARC) is a polyphenolic compound abundant in the roots of the burdock plant from which it derives its name. The emergence of bacterial resistance is a growing global worry, specifically due to the declining availability of new antibiotics. Screening for the antibacterial candidates among the safe natural products is a promising approach. The present study was aimed to assess the antibacterial activity of ARC against Pseudomonas aeruginosa exploring its effect on the bacterial cell membrane. Furthermore, the anti-virulence activities and anti-quorum sensing (QS) activities of ARC were in vitro, in vivo and in silico assessed against P. aeruginosa. The current results showed the ARC antibacterial activity was owed to its disruption effect of the cell membrane. ARC at sub-MIC significantly decreased the formation of biofilm, motility, production of extracellular enzymes and in vivo protected mice against P. aeruginosa. These anti-virulence activities of ARC are owed to its interference with bacterial QS and its expression. Furthermore, ARC showed mild effect on mammalian erythrocytes, low probability to induce resistance and synergistically combined with antibiotics. In summary, the promising anti-virulence properties of ARC indicate its potential as an effective supplement to conventional antibiotics for treating severe P. aeruginosa infections.

5.
Eur J Pharmacol ; 862: 172627, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31461638

ABSTRACT

Isorhapontigenin is a polyphenolic compound found in Chinese herbs and grapes. It is a methoxylated analogue of a stilbenoid, resveratrol, which is well-known for its various beneficial effects including anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability than resveratrol and has also been identified to possess anti-cancer and anti-inflammatory properties. However, its effects on platelet function have not been reported previously. In this study, we report the effects of isorhapontigenin on the modulation of platelet function. Isorhapontigenin was found to selectively inhibit ADP-induced platelet aggregation with an IC50 of 1.85 µM although it displayed marginal inhibition on platelet aggregation induced by other platelet agonists at 100 µM. However, resveratrol exhibited weaker inhibition on ADP-induced platelet aggregation (IC50 > 100 µM) but inhibited collagen induced platelet aggregation at 50 µM and 100 µM. Isorhapontigenin also inhibited integrin αIIbß3 mediated inside-out and outside-in signalling and dense granule secretion in ADP-induced platelet activation but interestingly, no effect was observed on α-granule secretion. Isorhapontigenin did not exert any cytotoxicity on platelets at the concentrations of up to 100 µM. Furthermore, it did not affect haemostasis in mice at the IC50 concentration (1.85 µM). In addition, the mechanistic studies demonstrated that isorhapontigenin increased cAMP levels and VASP phosphorylation at Ser157 and decreased Akt phosphorylation. This suggests that isorhapontigenin may interfere with cAMP and PI3K signalling pathways that are associated with the P2Y12 receptor. Molecular docking studies emphasised that isorhapontigenin has greater binding affinity to P2Y12 receptor than resveratrol. Our results demonstrate that isorhapontigenin has selective inhibitory effects on ADP-stimulated platelet activation possibly via P2Y12 receptor.


Subject(s)
Blood Platelets/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Stilbenes/pharmacology , Adenosine Diphosphate/pharmacology , Animals , Blood Platelets/metabolism , Drug Evaluation, Preclinical , Female , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Animal , Molecular Docking Simulation , Platelet Aggregation Inhibitors/therapeutic use , Platelet Function Tests , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Receptors, Purinergic P2Y12/chemistry , Receptors, Purinergic P2Y12/metabolism , Resveratrol/analogs & derivatives , Resveratrol/pharmacology , Signal Transduction/drug effects , Stilbenes/chemistry , Stilbenes/therapeutic use , Thrombosis/drug therapy
6.
Sci Rep ; 9(1): 18258, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796818

ABSTRACT

Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbß3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.


Subject(s)
Lipopolysaccharides/pharmacology , Platelet Activation/drug effects , Blood Platelets/drug effects , Blood Platelets/immunology , Blood Platelets/metabolism , Escherichia coli , Humans , NF-kappa B/metabolism , Platelet Activation/immunology , Platelet Aggregation/drug effects , Rhodobacter sphaeroides , Salmonella , Toll-Like Receptor 4/metabolism
7.
Sci Rep ; 8(1): 9528, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29934595

ABSTRACT

Flavonoids exert innumerable beneficial effects on cardiovascular health including the reduction of platelet activation, and thereby, thrombosis. Hence, flavonoids are deemed to be a molecular template for the design of novel therapeutic agents for various diseases including thrombotic conditions. However, the structure-activity relationships of flavonoids with platelets is not fully understood. Therefore, this study aims to advance the current knowledge on structure-activity relationships of flavonoids through a systematic analysis of structurally-related flavones. Here, we investigated a panel of 16 synthetic flavones containing hydroxy or methoxy groups at C-7,8 positions on the A-ring, with a phenyl group or its bioisosteres as the B-ring, along with their thio analogues possessing a sulfur molecule at the 4th carbon position of the C-ring. The antiplatelet efficacies of these compounds were analysed using human isolated platelets upon activation with cross-linked collagen-related peptide by optical aggregometry. The results demonstrate that the hydroxyl groups in flavonoids are important for optimum platelet inhibitory activities. In addition, the 4-C=O and B ring phenyl groups are less critical for the antiplatelet activity of these flavonoids. This structure-activity relationship of flavonoids with the modulation of platelet function may guide the design, optimisation and development of flavonoid scaffolds as antiplatelet agents.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Blood Platelets/drug effects , Blood Platelets/physiology , Furans/chemistry , Humans , Platelet Aggregation/drug effects , Pyridines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL