Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Biomacromolecules ; 25(8): 4677-4685, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39074194

ABSTRACT

The creation of biodegradable and biocompatible shape memory polymers amenable to biofabrication techniques remains a challenge. The ability to create shape-changing biodegradable objects that are triggered at body temperature opens up possibilities in tissue engineering, minimally invasive surgery, and actuating bioimplants. Merging Digital Light Processing (DLP) printing with shape memory polymers brings us closer to new smart biomedical outcomes. Previously, we developed a poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resin for the DLP fabrication of biodegradable 3D objects. In further studies, we observed that some of these resins possessed shape memory properties, triggered by body temperature (37 °C). In this subsequent study, we explored the shape memory properties and tunability of this resin family via changes in copolymer composition, molecular weight, and identity of the acrylate end-capping unit. We found that we could create a library of shape memory resins, amenable to DLP printing, which allowed the creation of shape-actuating structures with some tunability over the speed of shape memory and mechanical properties. We observed that increased mole fraction of caprolactone in the copolymer and increased molecular weight of the polymer led to a decrease in speed of the shape memory switch. Furthermore, we observed a trade-off between the composition and the end-capping moiety on the mechanical properties of the polymers. These polymeric resins were able to be processed into shapes that were able to perform work, including the release of cargo and grabbing/lifting of an object. This platform now provides a way to tune the speed and mechanical properties of a shape memory DLP object created from common and scalable polymerization techniques. This work ultimately provides a new platform to develop customizable and biodegradable devices capable of actuating and delivery devices for numerous biomedical applications.


Subject(s)
Biocompatible Materials , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Smart Materials/chemistry , Polyesters/chemistry
2.
ACS Appl Mater Interfaces ; 16(19): 25353-25365, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712527

ABSTRACT

Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.

3.
Nanoscale ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39161293

ABSTRACT

The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.

SELECTION OF CITATIONS
SEARCH DETAIL