ABSTRACT
Polygenic risk scores (PRSs) hold promise for disease risk assessment and prevention. The Genomic Medicine at Veterans Affairs (GenoVA) Study is addressing three main challenges to the clinical implementation of PRSs in preventive care: defining and determining their clinical utility, implementing them in time-constrained primary care settings, and countering their potential to exacerbate healthcare disparities. The study processes used to test patients, report their PRS results to them and their primary care providers (PCPs), and promote the use of those results in clinical decision-making are modeled on common practices in primary care. The following diseases were chosen for their prevalence and familiarity to PCPs: coronary artery disease; type 2 diabetes; atrial fibrillation; and breast, colorectal, and prostate cancers. A randomized clinical trial (RCT) design and primary outcome of time-to-new-diagnosis of a target disease bring methodological rigor to the question of the clinical utility of PRS implementation. The study's pragmatic RCT design enhances its relevance to how PRS might reasonably be implemented in primary care. Steps the study has taken to promote health equity include the thoughtful handling of genetic ancestry in PRS construction and reporting and enhanced recruitment strategies to address underrepresentation in research participation. To date, enhanced recruitment efforts have been both necessary and successful: participants of underrepresented race and ethnicity groups have been less likely to enroll in the study than expected but ultimately achieved proportional representation through targeted efforts. The GenoVA Study experience to date offers insights for evaluating the clinical utility of equitable PRS implementation in adult primary care.
Subject(s)
Diabetes Mellitus, Type 2 , Prostatic Neoplasms , Adult , Humans , Male , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Primary Health Care , Prostatic Neoplasms/genetics , Randomized Controlled Trials as Topic , Risk Assessment , Risk FactorsABSTRACT
BACKGROUND: Validated computable eligibility criteria use real-world data and facilitate the conduct of clinical trials. The Genomic Medicine at VA (GenoVA) Study is a pragmatic trial of polygenic risk score testing enrolling patients without known diagnoses of 6 common diseases: atrial fibrillation, coronary artery disease, type 2 diabetes, breast cancer, colorectal cancer, and prostate cancer. We describe the validation of computable disease classifiers as eligibility criteria and their performance in the first 16 months of trial enrollment. METHODS: We identified well-performing published computable classifiers for the 6 target diseases and validated these in the target population using blinded physician review. If needed, classifiers were refined and then underwent a subsequent round of blinded review until true positive and true negative rates ≥80% were achieved. The optimized classifiers were then implemented as pre-screening exclusion criteria; telephone screens enabled an assessment of their real-world negative predictive value (NPV-RW). RESULTS: Published classifiers for type 2 diabetes and breast and prostate cancer achieved desired performance in blinded chart review without modification; the classifier for atrial fibrillation required two rounds of refinement before achieving desired performance. Among the 1077 potential participants screened in the first 16 months of enrollment, NPV-RW of the classifiers ranged from 98.4% for coronary artery disease to 99.9% for colorectal cancer. Performance did not differ by gender or race/ethnicity. CONCLUSIONS: Computable disease classifiers can serve as efficient and accurate pre-screening classifiers for clinical trials, although performance will depend on the trial objectives and diseases under study.