Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Stroke Cerebrovasc Dis ; 32(8): 107225, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348440

ABSTRACT

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an extremely rare hereditary cerebral small vessel disease caused by homozygous or compound heterozygous mutations in the gene coding for high-temperature requirement A serine peptidase 1 (HtrA1). Given the rare nature of the disease, delays in diagnosis and misdiagnosis are not uncommon. In this article, we reported the first case of CARASIL from Saudi Arabia with a novel homozygous variant c.1156C>T in exon 7 of the HTRA1 gene. The patient was initially misdiagnosed with primary progressive multiple sclerosis and treated with rituximab. CARASIL should be considered in the differential diagnosis of patients with suspected atypical progressive multiple sclerosis who have additional signs such as premature scalp alopecia and low back pain with diffuse white matter lesions in brain MRI. Genetic testing is important to confirm the diagnosis.


Subject(s)
Cerebral Arterial Diseases , Cerebrovascular Disorders , Leukoencephalopathies , Multiple Sclerosis , Humans , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/genetics , Cerebral Infarction/pathology , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Cerebrovascular Disorders/genetics , Alopecia/diagnosis , Alopecia/genetics , Mutation , High-Temperature Requirement A Serine Peptidase 1/genetics
2.
EMBO J ; 37(23)2018 12 03.
Article in English | MEDLINE | ID: mdl-30420557

ABSTRACT

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Subject(s)
Carboxypeptidases/deficiency , Cerebellum/enzymology , Motor Neurons/enzymology , Peripheral Nerves/enzymology , Purkinje Cells/enzymology , Spine/enzymology , Spinocerebellar Degenerations/enzymology , Cerebellum/pathology , Female , GTP-Binding Proteins , Humans , Male , Motor Neurons/pathology , Peptides/genetics , Peptides/metabolism , Peripheral Nerves/pathology , Protein Processing, Post-Translational , Purkinje Cells/pathology , Serine-Type D-Ala-D-Ala Carboxypeptidase , Spine/pathology , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology
3.
Am J Med Genet A ; 188(1): 83-88, 2022 01.
Article in English | MEDLINE | ID: mdl-34515413

ABSTRACT

Secondary findings (SF) are defined as genetic conditions discovered unintentionally during an evaluation of raw data for another disease. We aimed to identify the rate of secondary genetic findings in the Saudi population in the 59 genes of the American College of Medical Genetics and Genomics (ACMG) list. In our study, the raw data of 1254 individuals, generated from exome sequencing for clinical purposes, were studied. Variants detected in the 59 genes on the ACMG list of secondary findings were investigated. Pathogenicity classifications were assigned to those variants based on the ACMG scoring system. We identified 2409 variants in the 59 gene list, 45 variants were classified as pathogenic/likely pathogenic variants according to the ACMG classification. The LDLR gene had the greatest number of pathogenic/likely pathogenic variants 12%. Cardiovascular genetic diseases had the highest frequency of disorders detected as secondary findings. In this study, the overall rate of positive cases identified with secondary findings in the Saudi population was 8%. The different in our current study and the previous studies in Saudi Arabia can be explained by the differences between the sequencing method, the criteria used for variant classification, the availability of newer evidence at the time of the publication, and the fact that we identified Saudi novel variants never reported in other populations.


Subject(s)
Genetic Variation , Genomics , Exome/genetics , Genetic Testing , Humans , Saudi Arabia/epidemiology , Exome Sequencing
4.
Brain ; 144(5): 1422-1434, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33970200

ABSTRACT

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Subject(s)
Oxygenases/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , Female , Humans , Male , Mice , Mutation , Pedigree , Rats , Zebrafish
5.
Genet Med ; 23(8): 1551-1568, 2021 08.
Article in English | MEDLINE | ID: mdl-33875846

ABSTRACT

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Subject(s)
Exome , Intellectual Disability , Base Sequence , Exome/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Nerve Tissue Proteins , Phenotype , Exome Sequencing
6.
Clin Genet ; 100(5): 601-606, 2021 11.
Article in English | MEDLINE | ID: mdl-34272725

ABSTRACT

In 2016 a new syndrome with postnatal short stature and low IGF1 bioavailability caused by biallelic loss-of-function mutations in the gene encoding the metalloproteinase pregnancy-associated plasma protein A2 (PAPP-A2) was described in two families. Here we report two siblings of a third family from Saudi Arabia with postnatal growth retardation and decreased IGF1 availability due to a new homozygous nonsense mutation (p.Glu886* in exon 7) in PAPPA2. The two affected males showed progressively severe short stature starting around 8 years of age, moderate microcephaly, decreased bone mineral density, and high circulating levels of total IGF1, IGFBP3, and the IGF acid-labile subunit (IGFALS), with decreased free IGF1 concentrations. Interestingly, circulating IGF2 and IGFBP5 were not increased. An increase in growth velocity and height was seen in the prepuberal patient in response to rhIGF1. These patients contribute to the confirmation of the clinical picture associated with PAPP-A2 deficiency and that the PAPPA2 gene should be studied in all patients with short stature with this characteristic phenotype. Hence, pediatric endocrinologists should measure circulating PAPP-A2 levels in the study of short stature as very low or undetectable levels of this protein can help to focus the diagnosis and treatment.


Subject(s)
Dwarfism/diagnosis , Dwarfism/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Insulin-Like Growth Factor I/metabolism , Phenotype , Pregnancy-Associated Plasma Protein-A/deficiency , Adolescent , Biomarkers , Dwarfism/blood , Family , Female , Genetic Association Studies/methods , Humans , Loss of Function Mutation , Male , Radiography , Saudi Arabia , Siblings
7.
Ann Hum Genet ; 84(5): 370-379, 2020 09.
Article in English | MEDLINE | ID: mdl-32401353

ABSTRACT

BACKGROUND: Familial Mediterranean fever is a hereditary inflammatory disorder caused by variants in MEFV. c.2230G>T p.(Ala744Ser) rs61732874 is considered to be an established pathogenic variant in MEFV, but in this study we provide a complete evaluation that suggests this variant is likely benign. METHODS: Using an in-house exome database from 924 individuals, we extracted all individuals harboring this variant for clinical, laboratory, and familial evaluation. RESULTS: We identified the variant in 58 individuals from 39 families. The allele frequency of this variant in our database is 4.2%. None of the identified individuals match the diagnosis of Familial Mediterranean Fever. Using the American College of Medical Genetics and Genomics guidelines for variant classification, this variant is classified as likely benign and not pathogenic. CONCLUSION: Conflicting evidence about variants creates challenges for testing laboratories and impacts patient care. Sharing information drawn mainly from underrepresented populations and clinical phenotyping are important tools for precise curation of genetic variants.


Subject(s)
Familial Mediterranean Fever/genetics , Gene Frequency , Pyrin/genetics , Adolescent , Adult , Child , Child, Preschool , Exome , Female , Genetics, Population , Humans , Infant , Male , Middle Aged , Saudi Arabia , Young Adult
8.
Ann Hum Genet ; 84(6): 431-436, 2020 11.
Article in English | MEDLINE | ID: mdl-32533790

ABSTRACT

INTRODUCTION: Currently, next-generation sequencing (NGS) technology is more accessible and available to detect the genetic causation of diseases. Though NGS technology benefited some clinical phenotypes, for some clinical diagnoses such as seizures and epileptic disorders, adaptation occurred slowly. The genetic diagnosis was mainly based on epilepsy gene panels and not on whole exome and/or genome sequencing. METHOD: We retrospectively analyzed 420 index cases, referred for NGS over a period of 18 months, to investigate the challenges in diagnosing epilepsy. RESULT: Of the 420 cases, 65 (15%) were referred due to epilepsy with one third having a positive family history. The result of the NGS was 14 positive cases (21.5%), 16 inconclusive cases (24%), and 35 (53%) negative cases. No gene has been detected twice in the inconclusive and positive groups. Comparative genomic hybridization has been performed for all 30 NGS negative cases and four cases with pathogenic variants (deletion in 15q11.213.1, deletion of 2p16.3, deletion in Xq22.1, and deletion in 17p13.3) were identified. CONCLUSION: These findings have implications for our understanding of the approach to genetic testing and counseling of patients affected with seizures and epilepsy disorders. The overall diagnostic yield of exome/genome sequencing in our cohort was 23%. The main characteristic is genetic heterogeneity, supporting NGS technology as a suitable testing approach for seizures and epilepsy disorders. Genetic counseling for newly identified disease-causing variants depends on the pedigree interpretation, within the context of disease penetrance and variable expressivity.


Subject(s)
Counseling/methods , Epilepsy/genetics , Epilepsy/pathology , Genetic Heterogeneity , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Epilepsy/classification , Epilepsy/psychology , Female , Humans , Male , Pedigree , Phenotype , Retrospective Studies , Sequence Analysis, DNA/methods
9.
Genet Med ; 22(6): 1051-1060, 2020 06.
Article in English | MEDLINE | ID: mdl-32055034

ABSTRACT

PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.


Subject(s)
Bardet-Biedl Syndrome , Ciliopathies , Alleles , Bardet-Biedl Syndrome/genetics , Cilia/genetics , Ciliopathies/genetics , Humans , Sodium Channels
10.
Clin Genet ; 98(6): 555-561, 2020 12.
Article in English | MEDLINE | ID: mdl-32869858

ABSTRACT

In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Language Development Disorders/genetics , Membrane Proteins/genetics , Adolescent , Child , Consanguinity , Developmental Disabilities/physiopathology , Genetic Predisposition to Disease , Homozygote , Humans , Intellectual Disability/physiopathology , Language Development Disorders/physiopathology , Male , Mutation/genetics , Pedigree , RNA Splice Sites/genetics , Saudi Arabia/epidemiology , Exome Sequencing
11.
Neurogenetics ; 20(2): 109-115, 2019 05.
Article in English | MEDLINE | ID: mdl-30972502

ABSTRACT

Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.


Subject(s)
Alleles , Epilepsy/genetics , Genetic Variation , HSP40 Heat-Shock Proteins/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Consanguinity , Exome , Female , Humans , Male , Molecular Chaperones/metabolism , Mutation , Pedigree , Phenotype , Saudi Arabia , Exome Sequencing , Young Adult
12.
Ann Hum Genet ; 82(3): 165-170, 2018 05.
Article in English | MEDLINE | ID: mdl-29271474

ABSTRACT

INTRODUCTION: Primary microcephaly type 3 is a genetically heterogeneous condition caused by a homozygous or compound heterozygous mutation in CDK5 regulatory subunit associated protein 2 (CDK5RAP2) and characterized by reduced head circumference (<5th percentile) with additional phenotypes varying from pigmentary abnormalities to sensorineural hearing loss. Until now, congenital cataracts have not been reported in patients with primary microcephaly type 3. CLINICAL REPORT: We report multiple affected family members from a consanguineous Saudi family with microcephaly and congenital cataracts. We utilized a next-generation sequencing-based microcephaly gene panel that revealed a CDK5RAP2 variant (c.4055A>G; p.Glu1352Gly) as the most plausible candidate for the likely etiology in this family. Then we performed family segregation analysis using Sanger sequencing, autozygosity mapping, and whole exome sequencing, all of which revealed no other possible disease-causing variants. CONCLUSION: Here we report on a new clinical manifestation of CDK5RAP2 and expand the phenotype of primary microcephaly type 3.


Subject(s)
Cataract/genetics , Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Adolescent , Cataract/congenital , Cell Cycle Proteins , Child , Child, Preschool , Consanguinity , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Phenotype , Saudi Arabia , Exome Sequencing
13.
Genet Med ; 20(11): 1328-1333, 2018 11.
Article in English | MEDLINE | ID: mdl-29565419

ABSTRACT

PURPOSE: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are used to diagnose genetic and inherited disorders. However, few studies comparing the detection rates of WES and WGS in clinical settings have been performed. METHODS: Variant call format files were generated and raw data analysis was performed in cases in which the final molecular results showed discrepancies. We classified the possible explanations for the discrepancies into three categories: the time interval between the two tests, the technical limitations of WES, and the impact of the sequencing system type. RESULTS: This cohort comprised 108 patients with negative array comparative genomic hybridization and negative or inconclusive WES results before WGS was performed. Ten (9%) patients had positive WGS results. However, after reanalysis the WGS hit rate decreased to 7% (7 cases). In four cases the variants were identified by WES but missed for different reasons. Only 3 cases (3%) were positive by WGS but completely unidentified by WES. CONCLUSION: In this study, we showed that 30% of the positive cases identified by WGS could be identified by reanalyzing the WES raw data, and WGS achieved an only 7% higher detection rate. Therefore, until the cost of WGS approximates that of WES, reanalyzing WES raw data is recommended before performing WGS.


Subject(s)
Comparative Genomic Hybridization/methods , Exome Sequencing/methods , Genetic Diseases, Inborn/diagnosis , Whole Genome Sequencing/methods , Adult , Child , Child, Preschool , Exome/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genome, Human/genetics , Humans , Male
14.
Am J Med Genet A ; 176(7): 1602-1609, 2018 07.
Article in English | MEDLINE | ID: mdl-29736960

ABSTRACT

Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype.


Subject(s)
Genes, Recessive , Intellectual Disability/genetics , Intellectual Disability/pathology , Kinesins/genetics , Mutation , Child , Exome , Humans , Kinesins/chemistry , Male , Protein Conformation , Syndrome , Exome Sequencing
16.
Am J Med Genet A ; 173(12): 3201-3204, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28884927

ABSTRACT

Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings.


Subject(s)
Dermatitis, Exfoliative/genetics , S100 Proteins/genetics , Skin Diseases, Genetic/genetics , Adolescent , Dermatitis, Exfoliative/diagnosis , Dermatitis, Exfoliative/pathology , Female , Filaggrin Proteins , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Pedigree , Sequence Analysis, DNA , Skin/pathology , Skin Diseases, Genetic/diagnosis , Skin Diseases, Genetic/pathology
18.
Hum Genet ; 135(11): 1263-1268, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27481395

ABSTRACT

Glycine cleavage system (GCS) catalyzes the degradation of glycine and disruption of its components encoded by GLDC, AMT and GCSH are the only known causes of glycine encephalopathy, also known as non-ketotic hyperglycinemia (NKH). In this report, we describe a consanguineous family with one child who presented with NKH, but harbored no pathogenic variants in any of the three genes linked to this condition. Whole-exome sequencing revealed a novel homozygous missense variant in exon 9 of SLC6A9 NM_201649.3: c.1219 A>G (p.Ser407Gly) that segregates with the disease within the family. This variant replaces the highly conserved S407 in the ion-binding site of this glycine transporter and is predicted to disrupt its function. In murine model, knockout of Slc6a9 is associated with equivalent phenotype of NKH, namely respiratory distress and hypotonia. This is the first demonstration that mutation of the glycine transporter can be associated with NKH in humans.


Subject(s)
Base Sequence/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Hyperglycinemia, Nonketotic/genetics , Mutation/genetics , Amino Acid Oxidoreductases/genetics , Animals , Carrier Proteins/genetics , Exome/genetics , Female , Glycine/metabolism , Homozygote , Humans , Hyperglycinemia, Nonketotic/pathology , Infant , Mice , Mice, Knockout , Multienzyme Complexes/genetics , Phenotype , Transferases/genetics
19.
Genet Med ; 17(4): 319, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25835197

ABSTRACT

Genet Med advance online publication, January 22, 2015; doi:10.1038/gim.2014.205. In the Advance Online Publication version, of this article, there is a mistake on page 2 in the first paragraph of the Materials and Methods section. The sentence beginning "Among 3,459 probands initially referred for HCM genetic testing …" the correct number of probands is 3,473 not 3,459. The authors regret the error.

20.
Genet Med ; 17(11): 880-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25611685

ABSTRACT

PURPOSE: Hypertrophic cardiomyopathy (HCM) is caused primarily by pathogenic variants in genes encoding sarcomere proteins. We report genetic testing results for HCM in 2,912 unrelated individuals with nonsyndromic presentations from a broad referral population over 10 years. METHODS: Genetic testing was performed by Sanger sequencing for 10 genes from 2004 to 2007, by HCM CardioChip for 11 genes from 2007 to 2011 and by next-generation sequencing for 18, 46, or 51 genes from 2011 onward. RESULTS: The detection rate is ~32% among unselected probands, with inconclusive results in an additional 15%. Detection rates were not significantly different between adult and pediatric probands but were higher in females compared with males. An expanded gene panel encompassing more than 50 genes identified only a very small number of additional pathogenic variants beyond those identifiable in our original panels, which examined 11 genes. Familial genetic testing in at-risk family members eliminated the need for longitudinal cardiac evaluations in 691 individuals. Based on the projected costs derived from Medicare fee schedules for the recommended clinical evaluations of HCM family members by the American College of Cardiology Foundation/American Heart Association, our data indicate that genetic testing resulted in a minimum cost savings of about $0.7 million. CONCLUSION: Clinical HCM genetic testing provides a definitive molecular diagnosis for many patients and provides cost savings to families. Expanded gene panels have not substantively increased the clinical sensitivity of HCM testing, suggesting major additional causes of HCM still remain to be identified.


Subject(s)
Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Genetic Testing , Adolescent , Adult , Aged , Aged, 80 and over , Cardiomyopathy, Hypertrophic/epidemiology , Child , Child, Preschool , Costs and Cost Analysis , Female , Genetic Predisposition to Disease , Genetic Testing/economics , Genetic Testing/methods , Genetic Testing/standards , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/economics , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/standards , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL