Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
EMBO J ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143240

ABSTRACT

The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.

2.
Nature ; 559(7713): 274-278, 2018 07.
Article in English | MEDLINE | ID: mdl-29973720

ABSTRACT

The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the ß-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 ß-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism , Mad2 Proteins/chemistry , Mad2 Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/ultrastructure , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Binding Sites , Biocatalysis/drug effects , Cdc20 Proteins/chemistry , Cdc20 Proteins/metabolism , Cdc20 Proteins/ultrastructure , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/ultrastructure , Cryoelectron Microscopy , Humans , M Phase Cell Cycle Checkpoints/drug effects , Mad2 Proteins/ultrastructure , Models, Molecular , Protein Conformation , Spindle Apparatus/drug effects , Substrate Specificity
3.
EMBO Rep ; 21(6): e49831, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32307883

ABSTRACT

The anaphase-promoting complex (APC/C) is the key E3 ubiquitin ligase which directs mitotic progression and exit by catalysing the sequential ubiquitination of specific substrates. The activity of the APC/C in mitosis is restrained by the spindle assembly checkpoint (SAC), which coordinates chromosome segregation with the assembly of the mitotic spindle. The SAC effector is the mitotic checkpoint complex (MCC), which binds and inhibits the APC/C. It is incompletely understood how the APC/C switches substrate specificity in a cell cycle-specific manner. For instance, it is unclear how in prometaphase, when APC/C activity towards cyclin B and securin is repressed by the MCC, the kinase Nek2A is ubiquitinated. Here, we combine biochemical and structural analysis with functional studies in cells to show that Nek2A is a conformational-specific binder of the APC/C-MCC complex (APC/CMCC ) and that, in contrast to cyclin A, Nek2A can be ubiquitinated efficiently by the APC/C in conjunction with both the E2 enzymes UbcH10 and UbcH5. We propose that these special features of Nek2A allow its prometaphase-specific ubiquitination.


Subject(s)
M Phase Cell Cycle Checkpoints , Prometaphase , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mitosis , Spindle Apparatus/metabolism , Ubiquitination
4.
Nature ; 536(7617): 431-436, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27509861

ABSTRACT

In the dividing eukaryotic cell, the spindle assembly checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex (APC/C), the E3 ubiquitin ligase responsible for initiating chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), which inhibits the APC/C and delays chromosome segregation. By cryo-electron microscopy, here we determine the near-atomic resolution structure of a human APC/C­MCC complex (APC/C(MCC)). Degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit responsible for substrate interactions. BubR1 also obstructs binding of the initiating E2 enzyme UbcH10 to repress APC/C ubiquitination activity. Conformational variability of the complex enables UbcH10 association, and structural analysis shows how the Cdc20 subunit intrinsic to the MCC (Cdc20(MCC)) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/antagonists & inhibitors , Anaphase-Promoting Complex-Cyclosome/ultrastructure , Cryoelectron Microscopy , M Phase Cell Cycle Checkpoints/physiology , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/metabolism , Biocatalysis , Cdc20 Proteins/chemistry , Cdc20 Proteins/metabolism , Cdc20 Proteins/ultrastructure , Cell Cycle Proteins/metabolism , Chromosome Segregation , Humans , Kinetochores/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Spindle Apparatus/chemistry , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Nature ; 533(7602): 260-264, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27120157

ABSTRACT

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Mitosis , Phosphoproteins/metabolism , Amino Acid Motifs , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/ultrastructure , Antigens, CD , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apoenzymes/metabolism , Binding Sites , Cadherins/chemistry , Cadherins/metabolism , Cadherins/ultrastructure , Cdc20 Proteins/antagonists & inhibitors , Cdc20 Proteins/chemistry , Cdc20 Proteins/metabolism , Cdc20 Proteins/ultrastructure , Cryoelectron Microscopy , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Enzyme Activation , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/ultrastructure , Phosphorylation , Protein Binding , Protein Conformation , Tosylarginine Methyl Ester/pharmacology
6.
Genes Dev ; 27(21): 2367-79, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24186981

ABSTRACT

Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.


Subject(s)
Drosophila Proteins/chemistry , Drosophila melanogaster , Gene Expression Regulation, Developmental , Models, Molecular , Polycomb-Group Proteins/metabolism , Amino Acid Sequence , Animals , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Molecular Sequence Data , Mutation/genetics , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/genetics , Protein Binding , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , YY1 Transcription Factor/chemistry , YY1 Transcription Factor/metabolism
7.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38337031

ABSTRACT

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Subject(s)
Cdc20 Proteins , M Phase Cell Cycle Checkpoints , Spindle Apparatus , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/chemistry , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Signal Transduction , Humans
8.
Nat Commun ; 14(1): 2556, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137925

ABSTRACT

Lysine acetylation in histone tails is a key post-translational modification that controls transcription activation. Histone deacetylase complexes remove histone acetylation, thereby repressing transcription and regulating the transcriptional output of each gene. Although these complexes are drug targets and crucial regulators of organismal physiology, their structure and mechanisms of action are largely unclear. Here, we present the structure of a complete human SIN3B histone deacetylase holo-complex with and without a substrate mimic. Remarkably, SIN3B encircles the deacetylase and contacts its allosteric basic patch thereby stimulating catalysis. A SIN3B loop inserts into the catalytic tunnel, rearranges to accommodate the acetyl-lysine moiety, and stabilises the substrate for specific deacetylation, which is guided by a substrate receptor subunit. Our findings provide a model of specificity for a main transcriptional regulator conserved from yeast to human and a resource of protein-protein interactions for future drug designs.


Subject(s)
Histones , Lysine , Humans , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Acetylation , Histone Deacetylase 1/metabolism , Repressor Proteins/metabolism
9.
J Biol Chem ; 286(26): 23388-96, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21550984

ABSTRACT

Drosophila Nurf55 is a component of different chromatin-modifying complexes, including the PRC2 (Polycomb repressive complex 2). Based on the 1.75-Å crystal structure of Nurf55 bound to histone H4 helix 1, we analyzed interactions of Nurf55 (Nurf55 or p55 in fly and RbAp48/46 in human) with the N-terminal tail of histone H3, the first helix of histone H4, and an N-terminal fragment of the PRC2 subunit Su(z)12 using isothermal calorimetry and pulldown experiments. Site-directed mutagenesis identified the binding site of histone H3 at the top of the Nurf55 WD40 propeller. Unmodified or K9me3- or K27me3-containing H3 peptides were bound with similar affinities, whereas the affinity for K4me3-containing H3 peptides was reduced. Helix 1 of histone H4 and Su(z)12 bound to the edge of the ß-propeller using overlapping binding sites. Our results show similarities in the recognition of histone H4 and Su(z)12 and identify Nurf55 as a versatile interactor that simultaneously contacts multiple partners.


Subject(s)
Drosophila Proteins/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Histones/chemistry , Repressor Proteins/chemistry , Retinoblastoma-Binding Protein 4/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Polycomb Repressive Complex 2 , Polycomb-Group Proteins , Protein Structure, Secondary , Repressor Proteins/genetics , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism
10.
FEBS J ; 289(17): 5100-5120, 2022 09.
Article in English | MEDLINE | ID: mdl-34143558

ABSTRACT

The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.


Subject(s)
Cyclin-Dependent Kinases , Cyclins , Cell Cycle/genetics , Cryoelectron Microscopy , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Humans , Mitosis , Phosphorylation
11.
Nat Commun ; 13(1): 5075, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038598

ABSTRACT

Genes encoding the core cell cycle machinery are transcriptionally regulated by the MuvB family of protein complexes in a cell cycle-specific manner. Complexes of MuvB with the transcription factors B-MYB and FOXM1 activate mitotic genes during cell proliferation. The mechanisms of transcriptional regulation by these complexes are still poorly characterised. Here, we combine biochemical analysis and in vitro reconstitution, with structural analysis by cryo-electron microscopy and cross-linking mass spectrometry, to functionally examine these complexes. We find that the MuvB:B-MYB complex binds and remodels nucleosomes, thereby exposing nucleosomal DNA. This remodelling activity is supported by B-MYB which directly binds the remodelled DNA. Given the remodelling activity on the nucleosome, we propose that the MuvB:B-MYB complex functions as a pioneer transcription factor complex. In this work, we rationalise prior biochemical and cellular studies and provide a molecular framework of interactions on a protein complex that is key for cell cycle regulation.


Subject(s)
Gene Expression Regulation , Nucleosomes , Transcription Factors/chemistry , Cell Cycle , Cryoelectron Microscopy , DNA , Transcription Factors/metabolism
12.
Cell Rep ; 34(13): 108929, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789095

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls cell cycle transitions. Its regulation by the spindle assembly checkpoint (SAC) is coordinated with the attachment of sister chromatids to the mitotic spindle. APC/C SUMOylation on APC4 ensures timely anaphase onset and chromosome segregation. To understand the structural and functional consequences of APC/C SUMOylation, we reconstituted SUMOylated APC/C for electron cryo-microscopy and biochemical analyses. SUMOylation of the APC/C causes a substantial rearrangement of the WHB domain of APC/C's cullin subunit (APC2WHB). Although APC/CCdc20 SUMOylation results in a modest impact on normal APC/CCdc20 activity, repositioning APC2WHB reduces the affinity of APC/CCdc20 for the mitotic checkpoint complex (MCC), the effector of the SAC. This attenuates MCC-mediated suppression of APC/CCdc20 activity, allowing for more efficient ubiquitination of APC/CCdc20 substrates in the presence of the MCC. Thus, SUMOylation stimulates the reactivation of APC/CCdc20 when the SAC is silenced, contributing to timely anaphase onset.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , M Phase Cell Cycle Checkpoints , Sumoylation , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/ultrastructure , Cell Line, Tumor , HEK293 Cells , Humans , Mitosis , Models, Molecular , Protein Binding , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitination
14.
Open Biol ; 7(11)2017 11.
Article in English | MEDLINE | ID: mdl-29167309

ABSTRACT

The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Models, Biological
15.
Nat Cell Biol ; 14(6): 614-24, 2012 May 06.
Article in English | MEDLINE | ID: mdl-22561345

ABSTRACT

Kinetochores attach the replicated chromosomes to the mitotic spindle and orchestrate their transmission to the daughter cells. Kinetochore-spindle binding and chromosome segregation are mediated by the multi-copy KNL1(Spc105), MIS12(Mtw1) and NDC80(Ndc80) complexes that form the so-called KMN network. KMN-spindle attachment is regulated by the Aurora B(Ipl1) and MPS1(Mps1) kinases. It is unclear whether other mechanisms exist that support KMN activity during the cell cycle. Using budding yeast, we show that kinetochore protein Cnn1 localizes to the base of the Ndc80 complex and promotes a functionally competent configuration of the KMN network. Cnn1 regulates KMN activity in a spatiotemporal manner by inhibiting the interaction between its complexes. Cnn1 activity peaks in anaphase and is driven by the Cdc28, Mps1 and Ipl1 kinases.


Subject(s)
Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Anaphase , Cell Cycle Proteins/genetics , Chromosomes, Fungal/metabolism , Microtubule-Associated Proteins/genetics , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Spindle Apparatus/metabolism
16.
Curr Opin Struct Biol ; 21(3): 335-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21377352

ABSTRACT

The X-ray structure of the nucleosome core particle (NCP) has been a major milestone in the structural biology of chromatin. Since, our understanding how NCPs interact with multiple partners has been extending from single chromatin-binding domains recognizing post-translational modifications (PTMs) in histone tails towards the recognition of higher-order chromatin structure by multi-subunit chromatin remodeling complexes. The current review summarizes recent progress in the structural biology of nucleosome-recognition from chromatin-binding domains to multi-protein remodeling complexes.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , Adenosine Triphosphate/metabolism , Animals , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Ligands , Models, Molecular , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding/physiology
SELECTION OF CITATIONS
SEARCH DETAIL