Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Obes (Lond) ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937647

ABSTRACT

BACKGROUND/OBJECTIVES: Intrauterine metabolic reprogramming occurs in mothers with obesity during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans born to women with obesity. METHODS: Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art flow cytometry, and targeted metabolomics approach coupled with a Seahorse metabolic analyzer. RESULTS: We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation. We also show a reduction in levels of amino acids, a phenomenon previously linked to bone marrow aging. Using flow cytometry, we found changes in the immune complexity of bone marrow cells and identified a unique B cell population expressing CD19 and CD11b in the bone marrow of three-week-old offspring of high-fat diet-fed mothers. Our data also revealed increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhi B cells. CONCLUSIONS: Altogether, we demonstrate that the offspring of mothers with obesity show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.

2.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L66-L73, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37280517

ABSTRACT

Children born to obese mothers are prone to develop asthma and airway hyperresponsiveness, but the mechanisms behind this are unclear. Here we developed a mouse model of maternal diet-induced obesity that recapitulates metabolic abnormalities seen in humans born to obese mothers. Offspring of dams fed a high-fat diet (HFD) showed increased adiposity, hyperinsulinemia, and insulin resistance at 16 wk of age despite being fed only a regular diet (RD). Bronchoconstriction induced by inhaled 5-hydroxytriptamine was also significantly increased in offspring of HFD-fed versus RD-fed dams. Increased bronchoconstriction was blocked by vagotomy, indicating this reflex was mediated by airway nerves. Three-dimensional (3-D) confocal imaging of tracheas collected from 16-wk-old offspring showed that both epithelial sensory innervation and substance P expression were increased in the offspring of HFD-fed dams compared with offspring of RD-fed dams. For the first time, we show that maternal high-fat diet increases airway sensory innervation in offspring, leading to reflex airway hyperresponsiveness.NEW & NOTEWORTHY Our study reveals a novel potential mechanism, by which maternal high-fat diet increases the risk and severity of asthma in offspring. We found that exposure to maternal high-fat diet in mice leads to hyperinnervation of airway sensory nerves and increased reflex bronchoconstriction in offspring fed a regular diet only. These findings have important clinical implications and provide new insights into the pathophysiology of asthma, highlighting the need for preventive strategies in this patient population.


Subject(s)
Asthma , Prenatal Exposure Delayed Effects , Respiratory Hypersensitivity , Humans , Female , Child , Animals , Mice , Diet, High-Fat/adverse effects , Adult Children , Bronchoconstriction , Obesity , Reflex , Asthma/etiology
3.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39229218

ABSTRACT

Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, using a mouse model of maternal high-fat diet (HFD)-induced obesity, we show that whole body fat content of the offspring of HFD-fed mothers (Off-HFD) increases significantly from very early age when compared to the offspring regular diet-fed mothers (Off-RD). We have previously shown significant metabolic and immune perturbations in the bone marrow of newly-weaned offspring of obese mothers. Therefore, we hypothesized that lipid metabolism is altered in the bone marrow Off-HFD in newly-weaned offspring of obese mothers when compared to the Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from three-week-old offspring of regular and high fat diet-fed mothers. Diacylgycerols (DAGs), triacylglycerols (TAGs), sphingolipids and phospholipids, including plasmalogen, and lysophospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in offspring of obese mothers, suggesting reduced delivery of cholesterol to bone marrow cells. This was accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from three-week-old mice and conducted metabolomics, lipidomics, and transcriptomics analyses. The lipidomic profiles of these bone marrow myeloid cells were largely similar to that seen in bone marrow cells and included increases in DAGs and phospholipids alongside decreased TAGs, except for long-chain TAGs, which were significantly increased. Our data also revealed significant sex-dependent changes in amino acids and metabolites related to energy metabolism. Transcriptomic analysis revealed altered expression of genes related to major immune pathways including macrophage alternative activation, B-cell receptor signaling, TGFß signaling, and communication between the innate and adaptive immune systems. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly-weaned offspring of obese mothers, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.

SELECTION OF CITATIONS
SEARCH DETAIL