Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Immunol ; 25(1): 155-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102487

ABSTRACT

In mouse peritoneal and other serous cavities, the transcription factor GATA6 drives the identity of the major cavity resident population of macrophages, with a smaller subset of cavity-resident macrophages dependent on the transcription factor IRF4. Here we showed that GATA6+ macrophages in the human peritoneum were rare, regardless of age. Instead, more human peritoneal macrophages aligned with mouse CD206+ LYVE1+ cavity macrophages that represent a differentiation stage just preceding expression of GATA6. A low abundance of CD206+ macrophages was retained in C57BL/6J mice fed a high-fat diet and in wild-captured mice, suggesting that differences between serous cavity-resident macrophages in humans and mice were not environmental. IRF4-dependent mouse serous cavity macrophages aligned closely with human CD1c+CD14+CD64+ peritoneal cells, which, in turn, resembled human peritoneal CD1c+CD14-CD64- cDC2. Thus, major populations of serous cavity-resident mononuclear phagocytes in humans and mice shared common features, but the proportions of different macrophage differentiation stages greatly differ between the two species, and dendritic cell (DC2)-like cells were especially prominent in humans.


Subject(s)
Macrophages, Peritoneal , Macrophages , Humans , Mice , Animals , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages, Peritoneal/metabolism , Cell Differentiation , Dendritic Cells
2.
Immunity ; 57(3): 403-406, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479355

ABSTRACT

Macrophages activated via the IL-4 receptor possess non-immune functions that support tissue homeostasis, but their specific role in aging is unknown. In this issue of Immunity, Zhou et al. show that IL-4 extends lifespan by inducing DNA repair pathways that protect macrophages from cellular senescence.


Subject(s)
Interleukin-4 , Macrophages , Interleukin-4/metabolism , Cellular Senescence , Longevity
3.
PLoS Genet ; 20(1): e1011116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227589

ABSTRACT

Heteromorphic sex chromosomes are usually thought to have originated from a pair of autosomes that acquired a sex-determining locus and subsequently stopped recombining, leading to degeneration of the sex-limited chromosome. The majority of nematode species lack heteromorphic sex chromosomes and determine sex using an X-chromosome counting mechanism, with males being hemizygous for one or more X chromosomes (XX/X0). Some filarial nematode species, including important parasites of humans, have heteromorphic XX/XY karyotypes. It has been assumed that sex is determined by a Y-linked locus in these species. However, karyotypic analyses suggested that filarial Y chromosomes are derived from the unfused homologue of an autosome involved in an X-autosome fusion event. Here, we generated a chromosome-level reference genome for Litomosoides sigmodontis, a filarial nematode with the ancestral filarial karyotype and sex determination mechanism (XX/X0). By mapping the assembled chromosomes to the rhabditid nematode ancestral linkage (or Nigon) elements, we infer that the ancestral filarial X chromosome was the product of a fusion between NigonX (the ancestrally X-linked element) and NigonD (ancestrally autosomal). In the two filarial lineages with XY systems, there have been two independent X-autosome chromosome fusion events involving different autosomal Nigon elements. In both lineages, the region shared by the neo-X and neo-Y chromosomes is within the ancestrally autosomal portion of the X, confirming that the filarial Y chromosomes are derived from the unfused homologue of the autosome. Sex determination in XY filarial nematodes therefore likely continues to operate via the ancestral X-chromosome counting mechanism, rather than via a Y-linked sex-determining locus.


Subject(s)
Filarioidea , Nematoda , Animals , Male , Humans , Y Chromosome/genetics , Sex Chromosomes , X Chromosome/genetics , Chromosomes, Human, X , Filarioidea/genetics
4.
Open Forum Infect Dis ; 11(2): ofad630, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312212

ABSTRACT

Background: We previously conducted a phase 2a randomized placebo-controlled trial of 40 subjects to assess the efficacy and safety of dupilumab use in people hospitalized with coronavirus disease 2019 (COVID-19) (NCT04920916). Based on our preclinical data suggesting that downstream pulmonary dysfunction with COVID-19 induced type 2 inflammation, we contacted patients from our phase 2a study at 1 year for assessment of post-COVID-19 conditions. Methods: Subjects at 1 year after treatment underwent pulmonary function tests, high-resolution computed tomographic imaging, symptom questionnaires, neurocognitive assessments, and serum immune biomarker analysis, with subject survival also monitored. The primary outcome was the proportion of abnormal diffusion capacity for carbon monoxide (DLCO) or 6-minute walk test (6MWT) at the 1-year visit. Results: Of those survivors who consented to 1-year visits (n = 16), subjects who had originally received dupilumab were less likely than those who received placebo to have an abnormal DLCO or 6MWT (Fisher exact P = .011; adjusted P = .058). As a secondary endpoint, we saw that 16% of subjects in the dupilumab group died by 1 year compared to 38% in the placebo group, though this was not statistically significant (log-rank P = .12). We did not find significant differences in neurocognitive testing, symptoms, or chest computed tomography between treatment groups but observed a larger reduction in eotaxin levels in those who received dupilumab. Conclusions: In this observational study, subjects who received dupilumab during acute COVID-19 hospitalization were less likely to have a reduced DLCO or 6MWT, with a nonsignificant trend toward reduced mortality at 1 year compared to placebo.

SELECTION OF CITATIONS
SEARCH DETAIL