Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(11): 1384-1396, 2020 11.
Article in English | MEDLINE | ID: mdl-32989327

ABSTRACT

T follicular helper (TFH) cells are critical in adaptive immune responses to pathogens and vaccines; however, what drives the initiation of their developmental program remains unclear. Studies suggest that a T cell antigen receptor (TCR)-dependent mechanism may be responsible for the earliest TFH cell-fate decision, but a critical aspect of the TCR has been overlooked: tonic TCR signaling. We hypothesized that tonic signaling influences early TFH cell development. Here, two murine TCR-transgenic CD4+ T cells, LLO56 and LLO118, which recognize the same antigenic peptide presented on major histocompatibility complex molecules but experience disparate strengths of tonic signaling, revealed low tonic signaling promotes TFH cell differentiation. Polyclonal T cells paralleled these findings, with naive Nur77 expression distinguishing TFH cell potential. Two mouse lines were also generated to both increase and decrease tonic signaling strength, directly establishing an inverse relationship between tonic signaling strength and TFH cell development. Our findings elucidate a central role for tonic TCR signaling in early TFH cell-lineage decisions.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , H-2 Antigens/immunology , Immunization , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Mice, Transgenic , Peptides/immunology
2.
Nature ; 610(7933): 737-743, 2022 10.
Article in English | MEDLINE | ID: mdl-36071167

ABSTRACT

The mutualistic relationship of gut-resident microbiota and the host immune system promotes homeostasis that ensures maintenance of the microbial community and of a largely non-aggressive immune cell compartment1,2. The consequences of disturbing this balance include proximal inflammatory conditions, such as Crohn's disease, and systemic illnesses. This equilibrium is achieved in part through the induction of both effector and suppressor arms of the adaptive immune system. Helicobacter species induce T regulatory (Treg) and T follicular helper (TFH) cells under homeostatic conditions, but induce inflammatory T helper 17 (TH17) cells when induced Treg (iTreg) cells are compromised3,4. How Helicobacter and other gut bacteria direct T cells to adopt distinct functions remains poorly understood. Here we investigated the cells and molecular components required for iTreg cell differentiation. We found that antigen presentation by cells expressing RORγt, rather than by classical dendritic cells, was required and sufficient for induction of Treg cells. These RORγt+ cells-probably type 3 innate lymphoid cells and/or Janus cells5-require the antigen-presentation machinery, the chemokine receptor CCR7 and the TGFß activator αv integrin. In the absence of any of these factors, there was expansion of pathogenic TH17 cells instead of iTreg cells, induced by CCR7-independent antigen-presenting cells. Thus, intestinal commensal microbes and their products target multiple antigen-presenting cells with pre-determined features suited to directing appropriate T cell differentiation programmes, rather than a common antigen-presenting cell that they endow with appropriate functions.


Subject(s)
Cell Differentiation , Gastrointestinal Microbiome , Nuclear Receptor Subfamily 1, Group F, Member 3 , T-Lymphocytes, Regulatory , Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , Homeostasis , Immunity, Innate , Integrin alphaV/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, CCR7/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Antigen Presentation/immunology , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology
3.
Nat Immunol ; 15(3): 266-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24487322

ABSTRACT

Interactions of T cell antigen receptors (TCRs) with complexes of self peptide and major histocompatibility complex (MHC) are crucial to T cell development, but their role in peripheral T cell responses remains unclear. Specific and nonspecific stimulation of LLO56 and LLO118 T cells, which transgenically express a TCR specific for the same Listeria monocytogenes epitope, elicited distinct interleukin 2 (IL-2) and phosphorylated kinase Erk responses, the strength of which was set in the thymus and maintained in the periphery in proportion to the avidity of the binding of the TCR to the self peptide-MHC complex. Deprivation of self peptide-MHC substantially compromised the population expansion of LLO56 T cells in response to L. monocytogenes in vivo. Despite their very different self-reactivity, LLO56 T cells and LLO118 T cells bound cognate peptide-MHC with an identical affinity, which challenges associations made between these parameters. Our findings highlight a crucial role for selecting ligands encountered during thymic 'education' in determining the intrinsic functionality of CD4+ T cells.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/immunology , Adoptive Transfer , Animals , Cell Separation , Flow Cytometry , Humans , Immunoblotting , Listeriosis/immunology , Mice , Mice, Knockout , Surface Plasmon Resonance , Thymus Gland/cytology , Thymus Gland/immunology , Transfection
4.
Nat Immunol ; 15(9): 884-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029552

ABSTRACT

Although the transcription factor c-Myc is essential for the establishment of a metabolically active and proliferative state in T cells after priming, its expression is transient. It remains unknown how T cell activation is maintained after c-Myc expression is downregulated. Here we identified AP4 as the transcription factor that was induced by c-Myc and sustained activation of antigen-specific CD8+ T cells. Despite normal priming, AP4-deficient CD8+ T cells failed to continue transcription of a broad range of c-Myc-dependent targets. Mice lacking AP4 specifically in CD8+ T cells showed enhanced susceptibility to infection with West Nile virus. Genome-wide analysis suggested that many activation-induced genes encoding molecules involved in metabolism were shared targets of c-Myc and AP4. Thus, AP4 maintains c-Myc-initiated cellular activation programs in CD8+ T cells to control microbial infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-myc/immunology , Transcription Factors/immunology , Animals , Mice , West Nile Fever/immunology
5.
Immunity ; 47(5): 803-804, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29166579

ABSTRACT

In this issue of Immunity, Van Braeckel-Budimmir et al. (2017) reveal that the pathogenic response of mice to a Plasmodium berghei infection is dominated by a Vß8.1 T cell response. Mice lacking Vß8.1 T cells fail to mount a pathogenic response, thus showing that the TCR locus can be an Immune response (Ir) gene.


Subject(s)
Malaria , Receptors, Antigen, T-Cell, alpha-beta , Animals , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes
6.
Mol Psychiatry ; 29(5): 1241-1252, 2024 May.
Article in English | MEDLINE | ID: mdl-38243074

ABSTRACT

Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all pFDR < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all pFDR < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all pFDR < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Oxytocin , Psychotic Disorders , Humans , Oxytocin/pharmacology , Oxytocin/administration & dosage , Male , Connectome/methods , Psychotic Disorders/drug therapy , Psychotic Disorders/physiopathology , Magnetic Resonance Imaging/methods , Double-Blind Method , Adult , Brain/drug effects , Brain/physiopathology , Young Adult , Cross-Over Studies , Administration, Intranasal , Nerve Net/drug effects , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Adolescent , Risk
7.
J Biol Chem ; 299(8): 104992, 2023 08.
Article in English | MEDLINE | ID: mdl-37392848

ABSTRACT

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Subject(s)
Halothane , Heat-Shock Response , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Malignant Hyperthermia , Animals , Mice , Calcium/metabolism , Halothane/pharmacology , Heat-Shock Response/genetics , Malignant Hyperthermia/genetics , Malignant Hyperthermia/metabolism , Malignant Hyperthermia/pathology , Muscle, Skeletal/metabolism , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
8.
Nat Immunol ; 13(2): 121-8, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22261968

ABSTRACT

The T cell repertoire is generated during thymic development in preparation for the response to antigens from pathogens. The T cell repertoire is shaped by positive selection, which requires recognition by the T cell antigen receptor (TCR) of complexes of self peptide and major histocompatibility complex proteins (self-pMHC) with low affinity, and negative selection, which eliminates T cells with TCRs that recognize self-pMHC with high affinity. This generates a repertoire with low affinity for self-pMHC but high affinity for foreign antigens. The TCR must successfully engage both of these ligands for development, homeostasis and immune responses. This review discusses mechanisms underlying the interaction of the TCR with peptide-major histocompatibility complex ligands of varying affinity and highlights signaling mechanisms that enable the TCR to generate different responses to very distinct ligands.


Subject(s)
Autoantigens/immunology , Host-Pathogen Interactions/immunology , Receptors, Antigen, T-Cell/immunology , Self Tolerance/immunology , Animals , Humans , Major Histocompatibility Complex/immunology , Male , Mice , Signal Transduction/immunology , T-Lymphocytes/immunology , Thymocytes/immunology
9.
Nat Immunol ; 13(9): 880-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22842345

ABSTRACT

The sustained entry of Ca(2+) into CD4(+)CD8(+) double-positive thymocytes is required for positive selection. Here we identified a voltage-gated Na(+) channel (VGSC) that was essential for positive selection of CD4(+) T cells. Pharmacological inhibition of VGSC activity inhibited the sustained Ca(2+) influx induced by positively selecting ligands and the in vitro positive selection of CD4(+) but not CD8(+) T cells. In vivo short hairpin RNA (shRNA)-mediated knockdown of the gene encoding a regulatory ß-subunit of a VGSC specifically inhibited the positive selection of CD4(+) T cells. Ectopic expression of VGSC in peripheral AND CD4(+) T cells bestowed the ability to respond to a positively selecting ligand, which directly demonstrated that VGSC expression was responsible for the enhanced sensitivity. Thus, active VGSCs in thymocytes provide a mechanism by which a weak positive selection signal can induce the sustained Ca(2+) signals required for CD4(+) T cell development.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Sodium Channels/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Flow Cytometry , Humans , Ion Channel Gating , Mice , Mice, Transgenic , NAV1.5 Voltage-Gated Sodium Channel , Reverse Transcriptase Polymerase Chain Reaction , Voltage-Gated Sodium Channel beta-4 Subunit
10.
Psychol Med ; 54(5): 993-1003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37845827

ABSTRACT

BACKGROUND: Hippocampal hyperperfusion has been observed in people at Clinical High Risk for Psychosis (CHR), is associated with adverse longitudinal outcomes and represents a potential treatment target for novel pharmacotherapies. Whether cannabidiol (CBD) has ameliorative effects on hippocampal blood flow (rCBF) in CHR patients remains unknown. METHODS: Using a double-blind, parallel-group design, 33 CHR patients were randomized to a single oral 600 mg dose of CBD or placebo; 19 healthy controls did not receive any drug. Hippocampal rCBF was measured using Arterial Spin Labeling. We examined differences relating to CHR status (controls v. placebo), effects of CBD in CHR (placebo v. CBD) and linear between-group relationships, such that placebo > CBD > controls or controls > CBD > placebo, using a combination of hypothesis-driven and exploratory wholebrain analyses. RESULTS: Placebo-treated patients had significantly higher hippocampal rCBF bilaterally (all pFWE<0.01) compared to healthy controls. There were no suprathreshold effects in the CBD v. placebo contrast. However, we found a significant linear relationship in the right hippocampus (pFWE = 0.035) such that rCBF was highest in the placebo group, lowest in controls and intermediate in the CBD group. Exploratory wholebrain results replicated previous findings of hyperperfusion in the hippocampus, striatum and midbrain in CHR patients, and provided novel evidence of increased rCBF in inferior-temporal and lateral-occipital regions in patients under CBD compared to placebo. CONCLUSIONS: These findings suggest that hippocampal blood flow is elevated in the CHR state and may be partially normalized by a single dose of CBD. CBD therefore merits further investigation as a potential novel treatment for this population.


Subject(s)
Cannabidiol , Psychotic Disorders , Humans , Cannabidiol/pharmacology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Hippocampus/diagnostic imaging , Corpus Striatum , Double-Blind Method
11.
Nutr Neurosci ; : 1-13, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794782

ABSTRACT

OBJECTIVES: Common mental disorders (CMD) are associated with impaired frontal excitatory/inhibitory (E/I) balance and reduced grey matter volume (GMV). Larger GMV (in the areas that are implicated in CMD-pathology) and improved CMD-symptomatology have been observed in individuals who adhere to high quality diets. Moreover, preclinical studies have shown altered neurometabolites (primarily gamma-aminobutyric acid: GABA and glutamate: GLU) in relation to diet quality. However, neurochemical correlates of diet quality and how these neurobiological changes are associated with CMD and with its transdiagnostic factor, rumination, is unknown in humans. Therefore, in this study, we examined the associations between diet quality and frontal cortex neuro-chemistry and structure, as well as CMD and rumination in humans. METHODS: Thirty adults were classified into high and low diet quality groups and underwent 1H-MRS to measure medial prefrontal cortex (mPFC) metabolite concentrations and volumetric imaging to measure GMV. RESULTS: Low (vs High) diet quality group had reduced mPFC-GABA and elevated mPFC-GLU concentrations, as well as reduced right precentral gyrus (rPCG) GMV. However, CMD and rumination were not associated with diet quality. Notably, we observed a significant negative correlation between rumination and rPCG-GMV and a marginally significant association between rumination and mPFC-GLU concentrations. There was also a marginally significant association between mPFC-GLU concentrations and rPCG-GMV. DISCUSSION: Adhering to unhealthy dietary patterns may be associated with compromised E/I balance, and this could affect GMV, and subsequently, rumination.

12.
Appl Opt ; 63(5): 1241-1246, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437303

ABSTRACT

We demonstrate a Sagnac-interferometer-based multiwavelength fiber laser with an intensity-dependent loss (IDL) mechanism in the L-band region using a semiconductor optical amplifier (SOA) as the gain medium. The IDL mechanism flattens and stabilizes the multiwavelength spectrum. We also investigate the effect of rotation angles of polarization controllers (PCs) at different polarization devices on multiwavelength performance. At best settings, 31 lasing lines within 3 dB uniformity were generated with an extinction ratio (ER) of 17 dB. Adjusting the half-wave plate of PC1 and PC2 from 0° to 90° shifted the multiwavelength output by 0.01 nm and 0.072 nm, respectively. PC2 adjustment also affects the multiwavelength flatness as compared to PC1. Furthermore, the number of lasing lines and the ER were directly influenced by the SOA current.

13.
Aust N Z J Psychiatry ; 58(6): 467-497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470085

ABSTRACT

OBJECTIVE: Auditory hallucinations (hearing voices) have been associated with a range of altered cognitive functions, pertaining to signal detection, source-monitoring, memory, inhibition and language processes. Yet, empirical results are inconsistent. Despite this, several theoretical models of auditory hallucinations persist, alongside increasing emphasis on the utility of a multidimensional framework. Thus, clarification of current evidence across the broad scope of proposed mechanisms is warranted. METHOD: A systematic search of the Web of Science, PubMed and Scopus databases was conducted. Records were screened to confirm the use of an objective behavioural cognitive task, and valid measurement of hallucinations specific to the auditory modality. RESULTS: Auditory hallucinations were primarily associated with difficulties in perceptual decision-making (i.e. reduced sensitivity/accuracy for signal-noise discrimination; liberal responding to ambiguity), source-monitoring (i.e. self-other and temporal context confusion), working memory and language function (i.e. reduced verbal fluency). Mixed or limited support was observed for perceptual feature discrimination, imagery vividness/illusion susceptibility, source-monitoring for stimulus form and spatial context, recognition and recall memory, executive functions (e.g. attention, inhibition), emotion processing and language comprehension/hemispheric organisation. CONCLUSIONS: Findings were considered within predictive coding and self-monitoring frameworks. Of concern was the portion of studies which - despite offering auditory-hallucination-specific aims and inferences - employed modality-general measures, and/or diagnostic-based contrasts with psychologically healthy individuals. This review highlights disparities within the literature between theoretical conceptualisations of auditory hallucinations and the body of rigorous empirical evidence supporting such inferences. Future cognitive investigations, beyond the schizophrenia-spectrum, which explicitly define and measure the timeframe and sensory modality of hallucinations, are recommended.


Subject(s)
Hallucinations , Hallucinations/physiopathology , Humans , Cognition/physiology , Auditory Perception/physiology , Executive Function/physiology
14.
Healthc Manage Forum ; 37(1): 26-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37459444

ABSTRACT

This article underscores the significance of cyberdefences and response processes in healthcare, highlighting their contribution to cyber resilience through adherence to industry best practices. It emphasizes the value of hypothetical scenarios as a common practice in the field to validate the effectiveness of cyber resilient actions, systems, processes, and decision-making in the face of various cyberthreats. Focusing on the ransomware threat, the provided scenario examines its impact on healthcare systems and frontline support staff, while highlighting the time-sensitive challenges faced by response teams striving to restore essential services. Furthermore, it suggests replicating such analyses with key hospital personnel to precisely assess the impact of other types of cyberthreats, such as those originating from malicious insiders or technical data breaches facilitated through social engineering attacks. By doing so, healthcare organizations can develop comprehensive and cyber resilient responses to safeguard their operations.


Subject(s)
Resilience, Psychological , Humans , Computer Security , Organizations , Delivery of Health Care
15.
Neuroimage ; 278: 120280, 2023 09.
Article in English | MEDLINE | ID: mdl-37460012

ABSTRACT

The circular inference (CI) computational model assumes a corruption of sensory data by prior information and vice versa, leading at the extremes to 'see what we expect' (through prior amplification) and/or to 'expect what we see' (through sensory amplification). Although a CI mechanism has been reported in a schizophrenia population, it has not been investigated in individuals experiencing psychosis-like experiences, such as people with high schizotypy traits. Furthermore, the neurobiological basis of CI, such as the link between hierarchical amplifications, excitatory neurotransmission, and resting state functional connectivity (RSFC), remains untested. The participants included in the present study consisted of a subsample of those recruited in a study previously published by our group, Kozhuharova et al. (2021b). We included 36 participants with High (n=18) and Low (n=18) levels of schizotypy who completed a probabilistic reasoning task (the Fisher task) for which individual confidence levels were obtained and fitted to the CI model. Participants also underwent a 1H-Magnetic Resonance Spectroscopy (MRS) scan to measure medial prefrontal cortex (mPFC) glutamate metabolite levels, and a functional Magnetic Resonance Imaging (fMRI) scan to measure RSFC of the medial prefrontal cortex (mPFC). People with high levels of schizotypy exhibited changes in CI parameters, altered cortical excitatory neurotransmission and RSFC that were all associated with sensory amplification. Our findings capture a multimodal signature of CI that is observable in people early in the psychosis spectrum.


Subject(s)
Glutamic Acid , Schizotypal Personality Disorder , Humans , Glutamic Acid/metabolism , Schizotypal Personality Disorder/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Prefrontal Cortex
16.
Mol Psychiatry ; 27(2): 1167-1176, 2022 02.
Article in English | MEDLINE | ID: mdl-34707236

ABSTRACT

Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Schizotypal Personality Disorder , Female , Humans , Magnetic Resonance Imaging/methods , Male , Psychotic Disorders/diagnostic imaging , Schizotypal Personality Disorder/diagnostic imaging
17.
Eur Arch Psychiatry Clin Neurosci ; 273(5): 1061-1072, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36738332

ABSTRACT

Childhood trauma (CT) has been linked to increased risk for psychosis. Moreover, CT has been linked to psychosis phenotypes such as impaired cognitive and sensory functions involved in the detection of novel sensory stimuli. Our objective was to investigate if CT was associated with changes in hippocampal and superior temporal gyrus functional activation and connectivity during a novelty detection task. Fifty-eight young adults were assigned to High-CT (n = 28) and Low-CT (n = 24) groups based on their scores on the childhood trauma questionnaire (CTQ) and underwent functional Magnetic Resonance Imaging during an auditory oddball task (AOT). Relative to the Low CT group, High CT participants showed reduced functional activation in the left hippocampus during the unpredictable tone condition of the AOT. Furthermore, in the High CT group, psychophysiological interaction analysis revealed hypoconnectivity between the hippocampus and temporal and medial regions. The present study indicates both altered hippocampal activation and hippocampal-temporal-prefrontal connectivity during novelty detection in individuals that experienced CT, similarly to that reported in psychosis risk populations. Early stressful experiences and environments may alter hippocampal function during salient events, mediating the relationship between childhood trauma and psychosis risk.


Subject(s)
Adverse Childhood Experiences , Psychotic Disorders , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/etiology , Psychotic Disorders/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Temporal Lobe
19.
Cogn Emot ; 37(2): 220-237, 2023 03.
Article in English | MEDLINE | ID: mdl-36583855

ABSTRACT

Attentional control theory (ACT) was proposed to account for trait anxiety's effects on cognitive performance. According to ACT, impaired processing efficiency in high anxiety is mediated through inefficient executive processes that are needed for effective attentional control. Here we review the central assumptions and predictions of ACT within the context of more recent empirical evidence from neuroimaging studies. We then attempt to provide an account of ACT within a framework of the relevant cognitive processes and their associated neural mechanisms and networks, particularly the fronto-parietal, cingular-opercula, and default mode networks. Future research directions, including whether a neuroscience-informed model of ACT can provide a platform for novel neurocognitive intervention for anxiety, are also discussed.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain Mapping/methods , Anxiety , Anxiety Disorders , Parietal Lobe , Brain , Neural Pathways
20.
J Immunol ; 204(4): 1035-1046, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900343

ABSTRACT

Bacteria express multiple diverse capsular polysaccharides (CPSs) for protection against environmental and host factors, including the host immune system. Using a mouse TCR transgenic CD4+ T cell, BθOM, that is specific for B. thetaiotaomicron and a complete set of single CPS-expressing B. thetaiotaomicron strains, we ask whether CPSs can modify the immune responses to specific bacterial Ags. Acapsular B. thetaiotaomicron, which lacks all B. thetaiotaomicron CPSs, stimulated BθOM T cells more strongly than wild-type B. thetaiotaomicron Despite similar levels of BθOM Ag expression, many single CPS-expressing B. thetaiotaomicron strains were antistimulatory and weakly activated BθOM T cells, but a few strains were prostimulatory and strongly activated BθOM T cells just as well or better than an acapsular strain. B. thetaiotaomicron strains that expressed an antistimulatory CPS blocked Ag delivery to the immune system, which could be rescued by Fc receptor-dependent Ab opsonization. All single CPS-expressing B. thetaiotaomicron strains stimulated the innate immune system to skew toward M1 macrophages and release inflammatory cytokines in an MyD88-dependent manner, with antistimulatory CPS activating the innate immune system in a weaker manner than prostimulatory CPS. The expression of antistimulatory versus prostimulatory CPSs on outer membrane vesicles also regulated immune responses. Moreover, antistimulatory and prostimulatory single CPS-expressing B. thetaiotaomicron strains regulated the activation of Ag-specific and polyclonal T cells as well as clearance of dominant Ag in vivo. These studies establish that the immune responses to specific bacterial Ags can be modulated by a diverse set of CPSs.


Subject(s)
Antigens, Bacterial/immunology , Bacteroides thetaiotaomicron/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Polysaccharides, Bacterial/metabolism , Animals , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroides thetaiotaomicron/cytology , Bacteroides thetaiotaomicron/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Homeodomain Proteins/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Mucosal , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Lymphocyte Activation , Mice , Mice, Knockout , Polysaccharides, Bacterial/immunology , Symbiosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL