Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cytokine ; 162: 156091, 2023 02.
Article in English | MEDLINE | ID: mdl-36481478

ABSTRACT

RATIONALE: Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical. OBJECTIVES: To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation. METHODS: Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints. MEASUREMENTS AND MAIN RESULTS: IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability. CONCLUSIONS: Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.


Subject(s)
Asthma , Pneumonia , Animals , Humans , Mice , Asthma/metabolism , Chemokines/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Interleukin-13/metabolism , Lung/metabolism , Pneumonia/metabolism , Interleukin-4/pharmacology
2.
Mol Pharmacol ; 101(4): 246-256, 2022 04.
Article in English | MEDLINE | ID: mdl-35125345

ABSTRACT

Specialized proresolving mediators (SPMs) and their cognate G protein-coupled receptors are implicated in autoimmune disorders, including chronic inflammation, rheumatoid arthritis, systemic scleroderma, and lupus erythematosus. To date, six G protein-coupled receptors (GPCRs) have been paired with numerous endogenous and synthetic ligands. However, the function and downstream signaling of these receptors remains unclear. To address this knowledge gap, we systematically expressed each receptor in a human embryonic kindney 293 (HEK293)-Flp-In-CD8a-FLAG cell system. Each receptor was pharmacologically characterized with both synthetic and putative endogenous ligands across different signaling assays, covering both G protein-dependent (Gs, Gi, and Gq) and independent mechanisms (ß-arrestin2 recruitment). Three orphan GPCRs previously identified as SPM receptors (GPR 18, GPR32 and GPR37) failed to express in HEK 293 cells. Although we were unsuccessful in identifying an endogenous ligand for formyl peptide receptor 2 (FPR2)/lipoxin A4 receptor (ALX), with only a modest response to N-formylmethionine-leucyl-phenylalanine (fMLP), we did reveal clear signaling bias away from extracelluar signal-related kinase (ERK) 1/2 phosphorylation for the clinically tested agonist N-(2-{[4-(1,1-difluoroethyl)-1,3-oxazol-2-yl]methyl}-2H-1,2,3-triazol-4-yl)-2-methyl-5-(3-methylphenyl)-1,3-oxazole-4-carboxamide (ACT-389949), adding further evidence for its poor efficacy in two phase I studies. We also identified neuroprotectin D1 as a new leukotriene B4 receptor 1 (BLT1) agonist, implying an alternative target for the neuroprotective effects of the ligand. We confirmed activity for resolvin E1 (RvE1) at BLT1 but failed to observe any response at the chemerin1 receptor. This study provides some much-needed clarity around published receptor-ligand pairings but indicates that the expression and function of these SPM GPCRs remains very much context-dependent. In addition, the identification of signaling bias at FPR2/ALX may assist in guiding design of new FPR2/ALX agonists for the treatment of autoimmune disorders. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to comprehensibly show how several natural mediators and synthetic ligands signal through three specialized proresolving mediator GPCRs using multiple ligands from different classes across four-six endpoint signaling assays. This study discovers new ligand pairings, refutes others, reveals poly-pharmacology, and identifies biased agonism in formyl peptide receptor 2/lipoxin A4 receptor pharmacology. This study highlights the potential of these receptors in treating specific autoimmune diseases, including rheumatoid arthritis, systemic scleroderma, and systemic lupus erythematosus.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Scleroderma, Systemic , HEK293 Cells , Humans , Ligands , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism
3.
Allergy ; 75(5): 1188-1204, 2020 05.
Article in English | MEDLINE | ID: mdl-31838750

ABSTRACT

BACKGROUND: Dupilumab, a fully human monoclonal antibody that binds IL-4Rα and inhibits signaling of both IL-4 and IL-13, has shown efficacy across multiple diseases with underlying type 2 signatures and is approved for treatment of asthma, atopic dermatitis, and chronic sinusitis with nasal polyposis. We sought to provide a comprehensive analysis of the redundant and distinct roles of IL-4 and IL-13 in type 2 inflammation and report dupilumab mechanisms of action. METHODS: Using primary cell assays and a mouse model of house dust mite-induced asthma, we compared IL-4 vs IL-13 vs IL-4Rα blockers. RESULTS: Intranasal administration of either IL-4 or IL-13 confers an asthma-like phenotype in mice by inducing immune cell lung infiltration, including eosinophils, increasing cytokine/chemokine expression and mucus production, thus demonstrating redundant functions of these cytokines. We further teased out their respective contributions using human in vitro culture systems. Then, in a mouse asthma model by comparing in head-to-head studies, either IL-4 or IL-13 inhibition to dual IL-4/IL-13 inhibition, we demonstrate that blockade of both IL-4 and IL-13 is required to broadly block type 2 inflammation, which translates to protection from allergen-induced lung function impairment. Notably, only dual IL-4/IL-13 blockade prevented eosinophil infiltration into lung tissue without affecting circulating eosinophils, demonstrating that tissue, but not circulating eosinophils, contributes to disease pathology. CONCLUSIONS: Overall, these data support IL-4 and IL-13 as key drivers of type 2 inflammation and help provide insight into the therapeutic mechanism of dupilumab, a dual IL-4/IL-13 blocker, in multiple type 2 diseases.


Subject(s)
Interleukin-13 , Animals , Antibodies, Monoclonal, Humanized , Inflammation , Interleukin-4 , Mice
4.
Immunity ; 34(3): 303-14, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21435585

ABSTRACT

T cell fate is associated with mutually exclusive expression of CD4 or CD8 in helper and cytotoxic T cells, respectively. How expression of one locus is temporally coordinated with repression of the other has been a long-standing enigma, though we know RUNX transcription factors activate the Cd8 locus, silence the Cd4 locus, and repress the Zbtb7b locus (encoding the transcription factor ThPOK), which is required for CD4 expression. Here we found that nuclear organization was altered by interplay among members of this transcription factor circuitry: RUNX binding mediated association of Cd4 and Cd8 whereas ThPOK binding kept the loci apart. Moreover, targeted deletions within Cd4 modulated CD8 expression and pericentromeric repositioning of Cd8. Communication between Cd4 and Cd8 thus appears to enable long-range epigenetic regulation to ensure that expression of one excludes the other in mature CD4 or CD8 single-positive (SP) cells.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Core Binding Factor alpha Subunits/immunology , Gene Expression Regulation/immunology , Animals , Epigenomics , Flow Cytometry , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred C57BL
5.
J Allergy Clin Immunol ; 144(6): 1624-1637.e10, 2019 12.
Article in English | MEDLINE | ID: mdl-31562870

ABSTRACT

BACKGROUND: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. OBJECTIVE: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. METHODS: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. RESULTS: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti-IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. CONCLUSION: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Interleukin-33/immunology , Lung/immunology , Pyroglyphidae/immunology , Signal Transduction/immunology , Animals , Asthma/chemically induced , Asthma/pathology , Asthma/therapy , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Interleukin-33/antagonists & inhibitors , Lung/pathology , Mice , Mice, Transgenic , Th2 Cells/immunology , Th2 Cells/pathology
6.
Blood ; 123(13): 2044-53, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24452204

ABSTRACT

In mantle cell lymphoma (MCL), one allele of the cyclin D1 (Ccnd1) gene is translocated from its normal localization on chromosome 11 to chromosome 14. This is considered as the crucial event in the transformation process of a normal naive B-cell; however, the actual molecular mechanism leading to Ccnd1 activation remains to be deciphered. Using a combination of three-dimensional and immuno-fluorescence in situ hybridization experiments, the radial position of the 2 Ccnd1 alleles was investigated in MCL-derived cell lines and malignant cells from affected patients. The translocated Ccnd1 allele was observed significantly more distant from the nuclear membrane than its nontranslocated counterpart, with a very high proportion of IgH-Ccnd1 chromosomal segments localized next to a nucleolus. These perinucleolar areas were found to contain active RNA polymerase II (PolII) clusters. Nucleoli are rich in nucleolin, a potent transcription factor that we found to bind sites within the Ccnd1 gene specifically in MCL cells and to activate Ccnd1 transcription. We propose that the Ccnd1 transcriptional activation in MCL cells relates to the repositioning of the rearranged IgH-Ccnd1-carrying chromosomal segment in a nuclear territory with abundant nucleolin and active PolII molecules. Similar transforming events could occur in Burkitt and other B-cell lymphomas.


Subject(s)
Cell Nucleolus/metabolism , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Active Transport, Cell Nucleus/physiology , CCCTC-Binding Factor , Cell Line, Tumor , Cyclin D1/genetics , Genes, Neoplasm , HeLa Cells , Humans , Protein Transport , Repressor Proteins/metabolism , Nucleolin
7.
Genome Res ; 18(1): 39-45, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18032730

ABSTRACT

Facio-scapulo-humeral dystrophy (FSHD), a muscular hereditary disease with a prevalence of 1 in 20,000, is caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. Earlier, we demonstrated the existence in the vicinity of the D4Z4 repeat of a nuclear matrix attachment site, FR-MAR, efficient in normal human myoblasts and nonmuscular human cells but much weaker in muscle cells from FSHD patients. We now report that the D4Z4 repeat contains an exceptionally strong transcriptional enhancer at its 5'-end. This enhancer up-regulates transcription from the promoter of the neighboring FRG1 gene. However, an enhancer blocking activity was found present in FR-MAR that in vitro could protect transcription from the enhancer activity of the D4Z4 array. In vivo, transcription from the FRG1 and FRG2 genes could be down- or up-regulated depending on whether or not FR-MAR is associated with the nuclear matrix. We propose a model for an etiological role of the delocalization of FR-MAR in the genesis of FSHD.


Subject(s)
Chromosomes, Human, Pair 4/genetics , Enhancer Elements, Genetic/genetics , Matrix Attachment Regions/genetics , Models, Genetic , Muscular Dystrophy, Facioscapulohumeral/genetics , Quantitative Trait Loci/genetics , Transcription, Genetic/genetics , HeLa Cells , Humans , Microfilament Proteins , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/metabolism , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL